본문 바로가기
로그인

RESEARCH

Semiconductor System Lab

Through this homepage, we would like to share our sweats, pains,
excitements and experiences with you.

HI SYSTEMS 

Intelligent CNN-based Face Recognition

본문

Overview

Recently, face recognition (FR) based on always-on CIS has been investigated for the next-generation UI/UX of wearable devices. A FR system, shown in Fig. 14.6.1, was developed as a life-cycle analyzer or a personal black box, constantly recording the people we meet, along with time and place information. In addition, FR with always-on capability can be used for user authentication for secure access to his or her smart phone and other personal systems. Since wearable devices have a limited battery capacity for a small form factor, extremely low power consumption is required, while maintaining high recognition accuracy. Previously, a 23mW FR accelerator [1] was proposed, but its accuracy was low due to its hand-crafted feature-based algorithm. Deep learning using a convolutional neural network (CNN) is essential to achieve high accuracy and to enhance device intelligence. However, previous CNN processors (CNNP) [2-3] consume too much power, resulting in <;10 hours operation time with a 190mAh coin battery. 

Implementation results
 
Performance comparison
Figure 6 
Architecture
 
Features

  - Mixed-mode Face Detector 

  - Near-threshold CNN Processing 

  - Transpose-Read SRAM


Related Papers

  - ISSCC 2017 [pdf] 

Address#1233, School of Electrical Engineering, KAIST, 291 Daehak-ro (373-1 Guseong-dong), Yuseong-gu, Daejeon 34141, Republic of Korea
Tel +82-42-350-8068 Fax +82-42-350-3410E-mail sslmaster@kaist.ac.kr·© SSL. All Rights Reserved.·Design by NSTAR