HI SYSTEMS
An attention controlled multi-core architecture is proposed for energy efficient object recognition. The proposed architecture employs two IP layers having different roles for energy efficient recognition processing: the attention/control IPs compute regions-of-interest (ROIs) of the entire image and control the multiple processing core stopper form local object recognition processing on selected area. To this end, a task m…
As object recognition requires huge computation power to deal with complex image processing tasks, it is very challenging to meet real-time processing demands under low-power constraints for embedded systems. In this paper, a configurable heterogeneous multi-core architecture with a dual-mode linear processor array and a cellular neural network on the network on chip platform is presented for real-time object recognition. T…
Real-time augmented reality (AR) is actively studied for the future user interface and experience in high-performance head-mounted display (HMD) systems. The small battery size and limited computing power of the current HMD, however, fail to implement the real-time markerless AR in the HMD. In this paper, we propose a real-time and low-power AR processor for advanced 3D-AR HMD applications. For the high throughput, the proc…
Address#1233, School of Electrical Engineering, KAIST, 291 Daehak-ro (373-1 Guseong-dong), Yuseong-gu, Daejeon 34141, Republic of Korea Tel +82-42-350-8068 Fax +82-42-350-3410E-mail sslmaster@kaist.ac.kr·© SSL. All Rights Reserved.·Design by NSTAR