MS Thesis # Design and Implementation of Energy-Efficient Analog Front-End Circuit for a Sub-1V Digital Hearing Aid Chip **Sunyoung Kim** June 28, 2005 Semiconductor System Laboratory Korea Advanced Institute of Science and Technology #### **Outline** - Motivation - Proposed Analog Front-End Circuit - Building Blocks - Preamplifier with combined gain control - $-\Sigma$ - Δ Modulator with adaptive-SNR - Implementation Results - Conclusions and Further Works #### **Outline** - Motivation - Proposed Analog Front-End Circuit - Building Blocks - Preamplifier with combined gain control - $-\Sigma$ - Δ Modulator with adaptive-SNR - Implementation Results - Conclusions and Further Works #### **Motivation** - More and More Needs on Digital Hearing Aid - More Design Requirements - Low-power consumption - Small size - Programmability - Low cost CMOS process [Newsweek. June 6, 2005] "...more than 28 million Americans have some degree of hearing loss, a number that could reach 78 million by 2030..." ### Motivation (Cont'd) Americans with hearing trouble* *Mild to severe hearing loss,2002. Sources:NATL. Health interview survey, CDC # Overview of the Digital Hearing Aid *[ISSCC2002. John W. Fattaruso et.al.] #### **Outline** - Motivation - Proposed Analog Front-End Circuit - Building Blocks - Preamplifier with combined gain control - $-\Sigma$ - Δ Modulator with adaptive-SNR - Implementation Results - Conclusions and Further Works # **CGC** Preamplifier - Low Power Consumption - Controllability with combined gain control # Adaptive SNR Σ - Δ Modulator Multiple SNR values with adaptive SNR # **Needs of Adaptive-SNR Values** - Normal sound level from 30 to 90-dB SPL - High performance Σ - Δ Modulator - Sufficiently large sound above 90-dB SPL - Medium performance Σ-Δ Modulator # **Environment-Aware Operation** high-resolution operation with enhanced SNR # **Proposed Analog Front-End** #### **CGC Preamplifier Adaptive SNR Σ-Δ Modulator** #### **Outline** - Motivation - Proposed Analog Front-End Circuit - Building Blocks - Preamplifier with combined gain control - $-\Sigma$ - Δ Modulator with adaptive-SNR - Implementation Results - Conclusions and Further Works # **CGC** Preamplifier $$Av = \frac{OUT}{IN} = W_1 L_2 \left(1 + \frac{V_x}{V_{dd} - V_{VC}} \right) / W_2 L_1 \left(1 - \frac{V_x}{V_{dd} - V_{VC}} \right) \qquad V_1 = V_{VC} - V_x + V_x$$ # How to obtain multiple SNR values - Multiple Clock Frequencies - Various SNR values with small power consumption - Difficult to design by analog circuit - Multiple Orders of the Σ-Δ Modulator - Large SNR variations - High power consumption due to additional OTA - \bigcirc Unstable @ > 3rd order Σ - Δ modulator # Adaptive SNR Σ - Δ Modulator - Combine only the strong points of the two methods - **○** Variable clocking : 1.024-MHz or 2.048-MHz - **Various order : 2nd or 3rd order** # **Adaptive SNR** - SW₁ determines the number of integrators - SW₂ decides the clock frequency # Details of Adaptive SNR Σ - Δ Modulator • The combination of SW₁ and SW₂ allows the Σ - Δ modulator to obtain four kinds of SNR #### 2^{nd} order Σ - Δ Modulator • 2nd order Σ - Δ modulator when the /SW₁ is closed ### 3^{rd} order Σ - Δ Modulator • 3^{rd} order Σ - Δ modulator when the /SW₁ is opened #### Low Power OTA • DC gain: 77.6-dB **Unity gain bandwidth: 7.07-MHz** Phase margin: 55° @ 3-pF load Power Consumption: 15-μW #### **Outline** - Motivation - Proposed Analog Front-End Circuit - Building Blocks - Preamplifier with combined gain control - $-\Sigma$ - Δ Modulator with adaptive-SNR - Implementation Results - Conclusions and Further Works # Chip Microphotograph - 0.25-μm CMOS Process - 0.9-V supply voltage - 0.5-mm² active area - Preamplifier : 0.1-mm² - $-\Sigma$ - Δ Modulator : 0.4-mm² - Power consumption - $< 74.7-\mu W$ - Peak SNR - 72-dB(2nd), 86-dB(3rd) # Measured Performance - CGC Preamplifier • By reducing V_{TH} , the threshold knee point is decreased simultaneously # Attack and Release time - CGC Preamplifier Measured attack and release response # Measured SNR Measured output spectrum # SNR variation # - Adaptive SNR Σ-Δ Modulator Measured SNR/SNDR versus input amplitude # **Performance Summary** | Supply voltage | 0.9-V | | | | | | | |-------------------------|------------------------------------|----------------|-----------------------|----------------|---|-----------------|--| | Order | 2 nd c | er | 3 rd order | | | | | | Туре | 1 | 2 | | 3 | | 4 | | | Clock frequency (MHz) | 1.024 | 2.048 | | 1.024 | | 2.048 | | | Peak SNR | 72-dB | 8 | 31-dB | 78-dB | | 86-dB | | | Power dissipation | 26.4-μW | 26 | 8 9-11W | 35.7-μW | | 36.7-μW | | | (Σ-∆ Modulator) | 20.4-μνν | 26.8-μW | | 33.7-μνν | | 30.7-μνν | | | Power dissipation | Vvc=0.75 | | Vvc=0.8 | | V | Vvc=0.85 | | | (Preamplifier) | 33-μW | | 35- | ıW | | 38-μW | | | Total power dissipation | 59.4-μW ~ 74.7-μW | | | | | | | | (Analog front-end) | (According to the parameter value) | | | | | | | | Signal bandwidth | 8-kHz | | | | | | | # **Performance Comparison** | | Supply
Voltage | Power Consumption | Peak
SNR | Process
(CMOS) | |-------------------|-------------------|------------------------|-------------|------------------------| | JSSC 1997 | 2.15-V | 323-μW | 77-dB | 0.8- μm | | [Harry Neuteboom] | | | | | | JSSC 2002 | 1.1-V | 190 -μ W | 92-dB | 0.6- μ m | | [D. George Gata] | | | | | | This work | 0.9-V | 59.4-μW | 86-dB | 0.25 -μm | # **Power Consumption Comparison** #### **Outline** - Motivation - Proposed Analog Front-End Circuit - Building Blocks - Preamplifier with combined gain control - $-\Sigma$ - Δ Modulator with adaptive-SNR - Implementation Results - Conclusions and Further Works #### **Conclusions** - Digital Hearing Aid Preamplifier with Combined Gain Control - Controllability and Wide dynamic range - Low power consumption - Σ-Δ Modulator with Adaptive-SNR - Optimized Power consumption wrt input condition - Average power consumption of the proposed Hearing Aid Front End < 74.7-μW @ 0.9-V Supply #### **Further Works** Design and Implementation of Digital Hearing Aid with Combined Gain Control and Adaptive-SNR # Supplementary # **CGC** Preamplifier - Opamp. with MOS Resistive Circuit (MRC) - Small Area - Ease of Tunability for Future AGC # Details of Adaptive SNR Σ - Δ Modulator (a) Schematic of the Adaptive SNR Σ - Δ Modulator (b) Timing diagram of the clock