

MS Thesis

Design and Implementation of Energy-Efficient Analog Front-End Circuit for a Sub-1V Digital Hearing Aid Chip

Sunyoung Kim

June 28, 2005

Semiconductor System Laboratory

Korea Advanced Institute of Science and Technology

Outline

- Motivation
- Proposed Analog Front-End Circuit
- Building Blocks
 - Preamplifier with combined gain control
 - $-\Sigma$ - Δ Modulator with adaptive-SNR
- Implementation Results
- Conclusions and Further Works

Outline

- Motivation
- Proposed Analog Front-End Circuit
- Building Blocks
 - Preamplifier with combined gain control
 - $-\Sigma$ - Δ Modulator with adaptive-SNR
- Implementation Results
- Conclusions and Further Works

Motivation

- More and More Needs on Digital Hearing Aid
- More Design Requirements
 - Low-power consumption
 - Small size
 - Programmability
 - Low cost CMOS process

[Newsweek. June 6, 2005]

"...more than 28 million Americans have some degree of hearing loss, a number that could reach 78 million by 2030..."

Motivation (Cont'd)

Americans with hearing trouble*

*Mild to severe hearing loss,2002. Sources:NATL. Health interview survey, CDC

Overview of the Digital Hearing Aid

*[ISSCC2002. John W. Fattaruso et.al.]

Outline

- Motivation
- Proposed Analog Front-End Circuit
- Building Blocks
 - Preamplifier with combined gain control
 - $-\Sigma$ - Δ Modulator with adaptive-SNR
- Implementation Results
- Conclusions and Further Works

CGC Preamplifier

- Low Power Consumption
- Controllability with combined gain control

Adaptive SNR Σ - Δ Modulator

Multiple SNR values with adaptive SNR

Needs of Adaptive-SNR Values

- Normal sound level from 30 to 90-dB SPL
 - High performance Σ - Δ Modulator
- Sufficiently large sound above 90-dB SPL
 - Medium performance Σ-Δ Modulator

Environment-Aware Operation

high-resolution operation with enhanced SNR

Proposed Analog Front-End

CGC Preamplifier Adaptive SNR Σ-Δ Modulator

Outline

- Motivation
- Proposed Analog Front-End Circuit
- Building Blocks
 - Preamplifier with combined gain control
 - $-\Sigma$ - Δ Modulator with adaptive-SNR
- Implementation Results
- Conclusions and Further Works

CGC Preamplifier

$$Av = \frac{OUT}{IN} = W_1 L_2 \left(1 + \frac{V_x}{V_{dd} - V_{VC}} \right) / W_2 L_1 \left(1 - \frac{V_x}{V_{dd} - V_{VC}} \right) \qquad V_1 = V_{VC} - V_x + V_x$$

How to obtain multiple SNR values

- Multiple Clock Frequencies
 - Various SNR values with small power consumption
 - Difficult to design by analog circuit
- Multiple Orders of the Σ-Δ Modulator
 - Large SNR variations
 - High power consumption due to additional OTA
 - \bigcirc Unstable @ > 3rd order Σ - Δ modulator

Adaptive SNR Σ - Δ Modulator

- Combine only the strong points of the two methods
 - **○** Variable clocking : 1.024-MHz or 2.048-MHz
 - **Various order : 2nd or 3rd order**

Adaptive SNR

- SW₁ determines the number of integrators
- SW₂ decides the clock frequency

Details of Adaptive SNR Σ - Δ Modulator

• The combination of SW₁ and SW₂ allows the Σ - Δ modulator to obtain four kinds of SNR

2^{nd} order Σ - Δ Modulator

• 2nd order Σ - Δ modulator when the /SW₁ is closed

3^{rd} order Σ - Δ Modulator

• 3^{rd} order Σ - Δ modulator when the /SW₁ is opened

Low Power OTA

• DC gain: 77.6-dB

Unity gain bandwidth: 7.07-MHz

Phase margin: 55° @ 3-pF load

Power Consumption: 15-μW

Outline

- Motivation
- Proposed Analog Front-End Circuit
- Building Blocks
 - Preamplifier with combined gain control
 - $-\Sigma$ - Δ Modulator with adaptive-SNR
- Implementation Results
- Conclusions and Further Works

Chip Microphotograph

- 0.25-μm CMOS Process
- 0.9-V supply voltage
- 0.5-mm² active area
 - Preamplifier : 0.1-mm²
 - $-\Sigma$ - Δ Modulator : 0.4-mm²
- Power consumption
 - $< 74.7-\mu W$
- Peak SNR
 - 72-dB(2nd), 86-dB(3rd)

Measured Performance - CGC Preamplifier

• By reducing V_{TH} , the threshold knee point is decreased simultaneously

Attack and Release time - CGC Preamplifier

Measured attack and release response

Measured SNR

Measured output spectrum

SNR variation

- Adaptive SNR Σ-Δ Modulator

Measured SNR/SNDR versus input amplitude

Performance Summary

Supply voltage	0.9-V						
Order	2 nd c	er	3 rd order				
Туре	1	2		3		4	
Clock frequency (MHz)	1.024	2.048		1.024		2.048	
Peak SNR	72-dB	8	31-dB	78-dB		86-dB	
Power dissipation	26.4-μW	26	8 9-11W	35.7-μW		36.7-μW	
(Σ-∆ Modulator)	20.4-μνν	26.8-μW		33.7-μνν		30.7-μνν	
Power dissipation	Vvc=0.75		Vvc=0.8		V	Vvc=0.85	
(Preamplifier)	33-μW		35-	ıW		38-μW	
Total power dissipation	59.4-μW ~ 74.7-μW						
(Analog front-end)	(According to the parameter value)						
Signal bandwidth	8-kHz						

Performance Comparison

	Supply Voltage	Power Consumption	Peak SNR	Process (CMOS)
JSSC 1997	2.15-V	323-μW	77-dB	0.8- μm
[Harry Neuteboom]				
JSSC 2002	1.1-V	190 -μ W	92-dB	0.6- μ m
[D. George Gata]				
This work	0.9-V	59.4-μW	86-dB	0.25 -μm

Power Consumption Comparison

Outline

- Motivation
- Proposed Analog Front-End Circuit
- Building Blocks
 - Preamplifier with combined gain control
 - $-\Sigma$ - Δ Modulator with adaptive-SNR
- Implementation Results
- Conclusions and Further Works

Conclusions

- Digital Hearing Aid Preamplifier with Combined Gain Control
 - Controllability and Wide dynamic range
 - Low power consumption
- Σ-Δ Modulator with Adaptive-SNR
 - Optimized Power consumption wrt input condition
- Average power consumption of the proposed Hearing Aid Front End

< 74.7-μW @ 0.9-V Supply

Further Works

 Design and Implementation of Digital Hearing Aid with Combined Gain Control and Adaptive-SNR

Supplementary

CGC Preamplifier

- Opamp. with MOS Resistive Circuit (MRC)
 - Small Area
 - Ease of Tunability for Future AGC

Details of Adaptive SNR Σ - Δ Modulator

(a) Schematic of the Adaptive SNR Σ - Δ Modulator

(b) Timing diagram of the clock

