MPAL B9

Doctoral Thesis

=

A 247 SIMD Vertex ShaderE ©]-&3}
AAY TR g E 3D 18P TEAA

A Low Power Programmable 3D Graphics Processor
with Fixed-point SIMD Vertex Shader

& F = (F/{EE5 Sohn, Ju-Ho)
I S R e o S D =L B B B e R

Department of Electrical Engineering and Computer Science

Division of Electrical Engineering

@@ a7 & 4

Korea Advanced Institute of Science and Technology

2006

1A A~57Z SIMD Vertex ShaderE ©] 83l

AAY TR E 3D 18T A TEAA

A Low Power Programmable 3D Graphics

Processor with Fixed-point SIMD Vertex Shader

A Low Power Programmable 3D Graphics Processor
with Fixed-point SIMD Vertex Shader

Advisor: Professor Yoo, Hoi-Jun

By

Sohn, Ju-Ho

Department of Electrical Engineering and Computer Science
Division of Electrical Engineering

Korea Advanced Institute of Science and Technology

A thesis submitted to the faculty of the Korea Advanced Institute of

Science and Technology in partial fulfillment of the requirements for

the degree of Doctor of Philosophy in the Department of Electrical

Engineering and Computer Science, Division of Electrical
Engineering

Deajeon, Korea

2006. 6. 3

Approved by

Professor Yoo, Hoi-Jun

3

°o]-&

=
=

A A% SIMD Vertex Shader

= A A

2agWE 3p g A =

3T

A

-
4

ald
H)

o

o

ol

o

o

2901

o

gy

"s

2006

A1919)
AL

Al
o

)

(

g%

<!

Al
g

219191

Al
=

DEE 2 = 5, Sohn, Ju—Ho, A Low Power Programmable

3D Graphics Processor with Fixed—point SIMD Vertex

20035146 Shader. T& 4% SIMD Vertex ShaderZ 0|3t
MAz =Z=z2JzjHE 3D dsfEA ZZAMA.
Department of Electrical Engineering and Computer
Science, Division of Electrical Engineering. 2006,
99p. Advisor Professor Yoo, Hoi—Jun. Text in English
Abstract

The real time 3D graphics becomes the most attractive application for mobile
terminals, in which the battery lifetime and small computing power, however,
limit the system resources and memory bandwidth for graphics processing.
Besides, since users watch graphics images on a small screen very closely to their
eyes, recent mobile 3D graphics are introducing the programmability in both
hardware and software for more advanced functionality while achieving low
power consumption. In this research, I designed and implemented a programmable
graphics processor with fixed-point vertex shader for mobile applications. The
proposed architecture has four major features: separation of data transfer flow, full
hardware accelerations with stream processing, two level extensions of instruction
set architectures, and fixed-point single-instruction-multiple-data (SIMD)
processing. The graphics processor contains an ARMI10 compatible 32-bit RISC
processor, a 128-bit programmable fixed-point SIMD vertex shader, a low power
rendering engine with 26kB dedicated graphics cache, and a programmable
frequency synthesizer (PFS). Different from conventional graphics hardware, the
proposed graphics processor implements ARMI10 coprocessor architecture with
dual operations so that user-programmable vertex shading is possible for advanced
graphics algorithms and various streaming multimedia processing in mobile

applications. The circuits and architecture of the graphics processor are optimized

for fixed-point operations and achieve the low power consumption with help of
instruction-level power management of the vertex shader and pixel-level clock
gating of the rendering engine. The PFS with a fully balanced voltage-controlled
oscillator (VCO) controls the clock frequency from 8MHz to 200MHz
continuously and adaptively for low power modes by software. The 36mm’ chip
shows S50Muvertices/s and 200Mtexels/s peak graphics performance, dissipating
155mW in 0.18m 6-metal standard CMOS logic process. For more enhancement
of stream processing, model of 3D graphics computing is analyzed and SIMD
computing elements with hierarchical memory system is revised into the
architecture of graphics processor. The implemented graphics processor was
successfully demonstrated on the evaluation platform and verified real-time 3D

graphics in mobile applications.

Table of Contents

CHAPTER 1 Introduction

1.1 Mobile Multimedia Terminals
1.2 3D Graphics Pipeline

1.2.1 Traditional Graphics Pipeline
1.2.2 Programmable Graphics Pipeline
1.2.3 Cycle Breakdown of Graphics Pipeline
1.3 Related Works

1.3.1 RAMP by KAIST

1.3.2 MBX by PowerVR

1.3.3 Playstation Portable by Sony
1.3.4 SC10 by nVDIA

1.3.5 Others

1.4 Architecture Summary of Mobile Multimedia Hardwares

1.5 Contributions of This Research

CHAPTER 2 System Architecture

2.1 Model of 3D Graphics Computing

2.2 Separation of Data Transfer Flow

2.3 Full Hardware Accelerations with Stream Processing

2.4 Two Level Extensions of Instruction Set Architecture

2.5 Fixed-point SIMD Processing

2.6 System Analysis

@ O

11
13
14
15
16
18

20
22
25
27
30
34

Table of Contents

CHAPTER 3 Design of Graphics Processor

3.1 Fixed-point SIMD Vertex Shader
3.1.1 Internal Architecture

3.1.2 Instruction Set Architecture
3.1.3 SIMD Datapath Design

3.1.4 Operation Model

3.2 Rendering Engine

3.2.1 Internal Architecture

3.2.2 Instruction Set and Vertex FIFO
3.3 Low Power Techniques

3.3.1 Instruction-wise Power Management
3.3.2 Pixel-level Clock Gating

3.3.3 Programmable Frequency Synthesizer

CHAPTER 4 Chip Implementation

4.1 Implementation Results
4.2 Evaluation Platform

4.3 Performance Comparison

CHAPTER 5 Enhancing Stream Processing

5.1 Data Stream Architecture
5.1.1 Concepts of Stream Processing

5.1.2 Stream Processing in 3D Graphics

41
41
44
48
53
55
55
57
60
60
62
63

67
71
73

77
77
80

Table of Contents

5.2 Enhancing Stream Processing in Graphics Processor
5.2.1 Architecture Revision

5.1.2 Performance Limitation

CHAPTER 6 Conclusions and Further Work

6.1 Conclusions

6.2 Further Work

Summary
Bibliography

Acknowledgement

83
83
86

89
91

CHAPTER 1 Introduction 1

CHAPTER 1

Introduction

1.1 Mobile Multimedia Terminals

The popularity of mobile terminals such as smart cell-phones and wireless personal
digital assistants (PDAs) is increasing with the rapid expansion of the mobile
electronics market and its migration from text-based applications to various multimedia
applications. Today's mobile terminals are evolving to become wireless multimedia
centers that allow us to take pictures, watch 2D graphics animations and MPEG4
movies, listen to MP3 music, and enjoy Java games. Among these applications,
real-time 3D graphics becomes one of the most attractive applications. It is especially
beneficial to games, advertisement, and avatars whose data can be downloaded over the
wireless network. Complex 3D scenes can also be represented by lists of vertices,
texture images, and corresponding camera movements, yielding high data compression
ratios, so as to make 3D graphics advantageous for bandwidth-critical wireless
applications.

Since the real-time 3D graphics requires huge computing power and corresponding
memory bandwidth, it has been a critical issue even in PC or console platforms during
the past ten years [1-3]. Although today's PC graphics accelerators can draw
high-quality 3D images with high performance graphics processing unit (GPU),
however, handheld devices cannot tolerate those tens-of-watt power monsters. Figure

1.1-1 shows the mobile multimedia terminal and its requirements. For mobile

CHAPTER 1 Introduction 2

applications, the low power consumption is the most important issue because of limited
battery lifetime. When we use a typical Li-ion battery of 2000 mWh energy capacity,
the power budget of graphics system including processing and internal memory access
should be limited to less than 200mW for two or three hours seamless operation. The
Advanced RISC Mahcine (ARM) processor family that has the reduced instruction set
computer (RISC) architecture is widely used as the main platforms for wireless
applications because of its high MIPS/Watt [4]. However, these low power RISC
platforms have very limited system resources in terms of computation power and
memory bandwidth, so that the additional mobile graphics processor should be
implemented to consume as little energy as possible in the given platforms. Moreover,
since users are watching 3D graphics images on a small screen very closely to their eyes
[5], the graphics processor must generate high quality of graphics images with high
performance such as more than 1Mvertices/s processing speed. And, the variety of
applications in a single hardware requires the programmability for advanced and
flexible algorithms such as programmable vertex shading and image processing. Also,
the low-cost aspect cannot be ignored because the target system will be carried by

everybody's hand.

f—[Mobile Multimedia Terminals]—

< Requirements >

-Low power
(<200mW)
-High performance

(>1Mverticesis)
-Variable

applications

(Program m ability)
-Low cost (<5%)

[Figure 1.1-1: Mobile Multimedia Terminal and Its Requirements]

Recently, several researchers have tried to increase the mobile graphics capabilities in

mobile applications. Since the rasterization and texture mapping require more

CHAPTER 1 Introduction 3

processing complexities than the rest of operations in 3D graphics pipeline [6], most of
graphics architectures have mainly focused on the rendering pipeline and achieved the
efficient graphics performances [5][7][11-13]. However, since relatively little attention
has been given to 3D geometry operations, now they become the performance barriers
in 3D graphics pipeline. In the previous architectures, the general-purpose RISC
processors with simple integer datapath [11-13] or conventional bus-mapped
floating-point datapath [7] were used to process geometry operations. However, simple
integer datapath cannot provide the required performance of programmable graphics
processing. In the case of conventional floating-point datapath, the performance is also

limited due to low operating frequency for limited power consumption.

1.2 3D Graphics Pipeline

1.2.1 Traditional Graphics Pipeline

Modelview Perspective Perspective
Transform Projection Division
3D Model ' Object Eye Clip Device 2D
Data Coordinate Coordinate Coordinate Coordinate Screen

[Figure 1.2-1: Coordinate Transforms in 3D Graphics Pipeline]

The definition of graphics pipeline is the sequence of processes applied to
transform a three-dimensional image into a two-dimensional screen and can be
considered as the transformation between coordinate systems as shown in Fig.
1.2-1. The pipeline is responsible for processing information initially provided just
as properties at the end points (vertices) or control points of the geometric
primitives used to describe what is to be rendered. The typical primitives in 3D
graphics are lines and triangles. The type of properties provided per vertex
include x-y-z coordinates, RGB values, translucency, texture, reflectivity and other

characteristics.

CHAPTER 1 Introduction 4

Model
Geometry Stage Rendring Stage
\7 | Polygon Setup |
| Object Properties |
| {} | | XYZ Interpolation %
Transformation {}
{} | Z Compare | | UV Calculation |
| Lighting | JT JT
| {} | | Gouraud Shading | | Texture Access |
Perspective Projection {}
{} | Texture Filtering |
| Clipping |
<G | Color Blending)():l
| Texture Coordinate | {}
| Alpha Blending |

[Figure 1.2-2: Traditional Fixed Graphics Pipeline]

Figure 1.2-2 shows the traditional graphics pipeline. It is composed of geometry
operations calculating the attributes of vertices of triangles, and rendering
operations filling colors inside the triangles [8]. The geometry stage processes
polygon data from input models by performing operations such as transformation,
lighting, and perspective projection. Especially, the light effect is calculated by
blending ambient, specular, diffuse, and emission component originated by each
light source. Therefore it is computation-intensive, but the bottleneck can be
relieved by using fast, parallel datapaths such as multi-core vector processors with
3D graphics-optimized instruction set architecture. Software simulation indicates
that over 40GOPS is required when calculating the full suite of geometry
operations at speed of 1Mvertices/s in conventional embedded RISC processors
with floating-point graphics library [6]. The rendering stage takes the output of
the geometry stage and draws pixels to the screen buffer. It first sets up triangles
in 2D screen from 3D geometry data and performs interpolation to calculate edge
coordinates of each triangle. Then it renders each pixel by shading and texture
mapping, and also performs alpha-blending for translucent objects and

z-comparison for hidden surface removal. The rendering stage operations are

CHAPTER 1 Introduction 5

memory-intensive due to frequent accesses of the frame buffer, depth buffer and
texture memory. An effective graphics system memory bandwidth of 1GB/s is
required to show realistic 3D images with a pixel fill rate of 1Mpixels/s on

today's mobile terminals with QVGA screen size.

1.2.2 Programmable Graphics Pipeline

Figure 1.2-3 shows the comparison between traditional graphics pipeline and
programmable graphics pipeline. In the traditional graphics pipeline, each unit has
specific function with dedicated hardware block. So, it cannot give the flexibilities
to various graphics algorithms although it can be fast and efficient in fixed
graphics processing. Whether the batch processing such as vertex array is
employed or intermediate mode (sample code segment shown in the left of the
figure) is chosen, programmers cannot control the behavior of internal graphics
pipeline except mode or parameter settings.

In the programmable graphics pipeline, there are vertex shaders and fragment
shaders, which are optimized single-instruction-multiple data (SIMD) processors
[9]. The vertex shader can execute vertex program, composed of assembly
graphics instructions. It enables various user-defined vertex processing of
geometry pipeline for flexible 3D graphics functions. The fragment shader is
responsible for user-programmable pixel operations for realistic graphics images. It
can execute fragment program, composed of assembly graphics instructions
optimized for rendering pipeline. Now, programmers can control and calculate any
attributes of vertex and pixel by their specific programs on instruction-set
architecture (ISA) driven graphics processor. In addition to typical transformation
lighting and texture mapping, various graphics effects such as shadow volume
creation, vertex blending, motion blur, silhouette rendering and per-pixel phong

lighting are made possible.

CHAPTER 1 Introduction 6

Traditional Programmable
Graphics Pipeline Graphics Pipeline
Fixed User-defined
Functions Transform MERGECERT Graphics Processing
(+7 <% Vertex
Program
Lighting
LTEN _5‘ l
Simple Clipping Clipping Flexible 3D Graphics
Graphics ‘t ‘ Funtions
GL_VERTEX (V0) MUL V1, v2
GL_VERTEX (v1) Texture SEQ V1, v2
GL_VERTEX (V2) Mappin Fragment Shader RSQ V0.,vV2
GL_END pping
{} Fragment
Blending Program

[Figure 1.2-3: Programmable Graphics Pipeline]

In the case of mobile 3D graphics, the programmable pipeline can be more
useful, because we perform the graphics operations by software optimization in
the programmable shaders instead of many complex hardware blocks. It eliminates
unnecessary steps in graphics pipeline on specific input conditions. Moreover, the
programmability in mobile terminals can allow the various multimedia applications

to be optimized through software in a single compact and fast hardware.

1.2.3 Cycle Breakdown of Graphics Pipeline
Before designing mobile graphics architecture, cycle usage of each graphics
pipeline stage were analyzed on conventional embedded RISC processor
architecture such as ARM platforms [6].
Fig. 1.2-4 shows cycle breakdown of each sequence of 3D pipeline normalized to
ARM?7 cycle time when conventional software floating-point graphics library is
performed. The most time consuming part of the geometry stage is the calculation of

specular lighting due to the distance calculation between light source and object as well

CHAPTER 1 Introduction 7

as normal vector of the object. To calculate specular lighting, floating-point divisions
and square root operations are required. For the rendering stage, texturing consumes
most of time, because it uses logarithmic and exponential operations to find level of

detail (LOD) value, and it frequently accesses texture memory.

0.8

I o -Blending

I Texture

[Shading

[Rendering Setup
Perspective Projection
Ambient Light

Diffuse Light

Specular Light
Emission Light
Transformation

0.6

Rendering
0.4+

Normalized Clock

0.2

LOnam

Geometry

0.0

ARM7 ARM9 StrongARM

[Figure 1.2-4: Cycle Breakdown of Floating-point Graphics Library]

Fig. 1.2-5 shows instruction pattern of the geometry and rendering stage with SRAM
interface as memory system. The load/store cycles were counted only when the datapath
was owned by memory access instruction. The rendering stage has more memory access
cycles than geometry stage in all of the processor types. It means that the memory

bandwidth is more critical than computing complexity in the rendering stage. The
1.0 4

0.8

<
(]
o
o
B 064 I Load/Store (R)
8 [Computation (R)
s [Load/Store (G)
E 04 0.22 [Computation (G)
o
=z
0.061 G : Geometry stage
0.2 0055 R : Rendering Stage
’ 0.34
0.247 0.214
0.0
ARM7 ARM9 StrongARM

[Figure 1.2-5: Cycle Pattern of Graphics Pipeline]

CHAPTER 1 Introduction 8

portion of load/store cycles is cut in half for ARM9 and StrongARM that use Harvard
architecture in geometry stage. It is because in Harvard architecture, the instruction and
data can be fetched simultaneously. Since the required memory bandwidth can't be
solved in conventional processor architecture, there is no performance enhancement in
rendering stage even if ARM9 or StrongARM is used.

In order to enhance the computing efficiency of ARM's integer datapath, the
fixed-point graphics library was also analyzed. The cycle pattern is similar to the
case of the floating-point graphics library, However, the performance of geometry
stage is more improved than the rendering stage. Figure 1.2-6 shows the cycle
breakdown in this case. When using the fixed point library, the 79% of total cycle
times is spent in rendering stage and the performance of 3D pipeline is limited by pixel
fill rate. It is because the high memory bandwidth required in rendering stage cannot be

solved by means of increasing the computing efficiency.

Rendering
(0.79)

[Figure 1.2-6: Cycle Breakdown of Fixed-point Graphics Library]

1.3 Related Works

1.3.1 RAMP by KAIST
The memory bandwidth is the most stringent constraint in implementing 3D
graphics architecture. Solving the bandwidth bottleneck with traditional approaches
such as high-speed crossbar and off-chip DDR-SDRAMs can result in increased power
consumption. However, the limited screen resolutions in mobile terminals (e.g.,

QVGA) imply that the reasonable amount of integrated memory, from tens of kByte to

CHAPTER 1 Introduction 9

hundreds of kByte, is sufficient for graphics memories such as highly hit-rated caches or
frame buffers [10]. Moreover, integrating whole necessary memory itself with logic in a
single die yields more effective architectures or implementation schemes in terms of
performance and power consumption. The RAMP design methodology of KAIST is
based on the philosophy that memory is no longer a passive device, nor a sub-system.
The RAMP (RAM Processor) architecture utilizes embedded DRAM (eDRAM) for 3D
rendering in a very efficient manner that avoids connecting the memory with a large
number of wires and corresponding crossbar switch. Three RAMP chips were
evaluated in order to demonstrate the RAMP architectures and methodology [11-13].

The latest RAMP-1V [13] focuses more on real-time 3D gaming applications, drawing
bilinear MIPMAP texture-mapped pixels with special rendering effects at 66Mpixels/s
and 264Mtexels/s, as well as supporting shading operations of the previous RAMP
architectures. Figure 1.3-1 shows SlimShader architecture developed in RAMP-IV. It
consists of a triangle setup engine, an edge processor (EP), two pixel processors (PXPs),

and 29Mb of embedded DRAM. The reduced number of PXPs is compensated by using

Vertex
Data
128b SlimShader
| Polygon Fetch Engine |
| Triangle Setup Engine (TSE) |
2 PO b Y
| 512kb Depth Buffer 0 %
2 | Interpolation / — Interpolation /
| 512kb DB1 |3=b> o Depth Comparison Depth Comparison 6Mb
L rs T Texture 6Mb
M T™M1
| 512kb DB2 Eé’:: | Texture Address Texture Address | i
|
| e gz_g‘ I T T J S| S | S <
24b 24b
Memory Address Alignment Logic ﬂ
Programmer
P (AAL)
48 (MP) 124b 1|24n
| 768kb Frame Buffer 0 k%
8 | S 5
| 768kb FB1 |¢£‘V Textu:ey Filter | | Textu:i Filter 6Mb &Mb
| 768kb FB2 k“;% — : | L— . ™2 ™3
| Pixel Blending Pixel Blending
| 768kb FB3 k@v <
24b
Display Output

[Figure 1.3-1: SlimShader Architecture]

CHAPTER 1 Introduction 10

deeply pipelined PXP structure for high clock frequency of S0OMHz. Since texture
mapping is crucial function in real-time 3D graphics for more realistic pictures,
SlimShader contains two energy-efficient texture engines (TEs). In bilinear filtering,
two pixels mapped to texel space require 8 texture memory requests at every cycle,
causing huge power consumption. TEs employ Address Alignment Logic (AAL),
which uses temporal and spatial localities of texture addresses in MIPMAP-filtering to
reduce total memory requests, yielding power saving. For real-time special effects such
as fog, anti-aliasing and cartoon shading, memory programmer is implemented in
SlimShader, and post-processes the rendered pixels of frame buffer by using dedicated
instruction set and SIMD datapath.

RAMP-IV distributes the embedded DRAM over the logic pipeline via different
ports, in addition to pixel-parallel distribution. Each pipeline stage can directly
and concurrently access the contents of DRAM, just like accessing dedicated local
SRAM. Satisfying the pipeline timing is a big challenge in terms of DRAM
design as the cycle time (tRC) of embedded DRAMs must be less than 20ns,
while commodity SDRAMs are working at 65ns or more. The timing budget of
frame and depth buffers is even stricter as the read-data must be written back to
the same address within a single cycle for efficient Read-Modify-Write (RMW)
transactions. Distributing the DRAMs over the pipeline and accessing one or some
of them selectively can reduce the power consumption of memory by 65%. Since
the depth of the processed pixel is compared at the first stage of PXP pipeline,
the following stages and corresponding memories can be gated off according to
comparison result.

The SlimShader architecture is integrated into a RAMP-IV chip together with an
ARMO9-compatible RISC processor with enhanced multiply-and-accumulate
(MAC), 29Mb embedded DRAM, and a power management unit as shown in
Figure 1.3-2. The chip was fabricated using 0.16¢m Hynix 256Mb SDRAM

CHAPTER 1 Introduction 11

process. Its area and power consumption were 121lmm’° and 10mW respectively.
The RAMP-1V chip utilizes a pure DRAM process to reduce the fabrication cost.
Although the pure DRAM process has slower logic transistor speed and fewer
metal layers, a 133MHz speed could be achieved in the chip's RISC processor.
Negligible sub-threshold leakage current of the DRAM process also reduces
standby current, which is a critical issue for battery-driven device. However,
RAMP-IV accelerates only rendering operations, which occupy 79% of total
execution time. Therefore, Amdhal's law [14] tells that this limited functionality
guarantees only five times performance speed-up compared with software-only

implementation at most in actual cases.

RISC PMU
s
External ARM-9 g) B i
1/0 <?,,|> Core 2 1$ D$ —
MAC 8 e

@ 32p BEQ
| BEQ Controller | | 1KB Polygon Buffer |
128
{ } 3DRE DRAM
N 2Mb
SlimShader Depth Buffer

3Mb
416b Frame Buffer

Triangle Setup

Display <‘|: . .
Output a0 Pixel Pixel

P P
Pr

Memory
Programmer

0 1 24Mb
Texture Texture Texture Memory
Engine Engine

[Figure 1.3-2: RAMP-IV by KAIST]

1.3.2 MBX by PowerVR
MBX is 2D/3D graphics core co-developed by Imagination Technology and
ARM to accelerate 2D/3D graphics on ARM-based mobile platform [15]. As
shown in Figure 1.3-3, MBX contains a tile rasterizer, a hidden surface removal

(HSR) engine, a vertex geometry processor (VGP), a texture shading unit, a pixel

CHAPTER 1 Introduction 12

AHB SoC Tile
< >
ARM Interface Accelerator Hidden Toxt L 5| Pixel
RISC A Surface exture Blender
v Vertex Removal [] Shlj' ding
Geomet . nit
Event Process?r Engine
[>
Manager !
A A A
T Texture
Display list Cache
Parser
A A
‘Plsplay list v Z-Buffer Display list VTexture v
| Arbiter

v
Memory Interface

[Figure 1.3-3: PowerVR's MBX]

blender and 512kB texture cache. It also has its own memory controller with
virtual memory functions to reduce the overhead of host system. Energy
consumption is proportional to the number of memory access, so many researchers
focus on reducing off-chip bandwidth to enhance the battery lifetime for mobile
3D applications. Unlike the conventional graphics architecture [16], MBX reduces
memory accesses by tile-based rendering, in that a scene is partitioned into small
tiles or regions and each region is rendered independently. This deferred rendering
techniques may reduce the bandwidth to access data for frame and textures,
however it needs extra time and bandwidth to setup parameters for tiling itself.
To process the geometry operations, MBX has 4-way SIMD floating point VGP
optimized for 3D graphics. VGP can operate with rate of 4 FLOPS at the 120MHz in
the 0.13 m CMOS logic process. It can be used as hardware transformation and lighting
engine. MBX is the embedded 2D, 3D and video acceleration cores which can be
integrated with the conventional RISC core via system bus. Although it has the
all necessary hardware blocks for 3D graphics, the performance can be lower than
expected because the bus architecture is used as the interface between the host

processor and embedded core. The bus traffic caused by transferring the data

CHAPTER 1 Introduction 13

preprocessed by host processor to the embedded core can be bottleneck of
performance. Therefore, the sustained pixel fill rate can be only 9Mpixels/s at
100MHz, which is less than 10% of maximum rendering performance. Moreover

the cost was increased by complex system architecture.

1.3.3 Playstation Portable by Sony
In 2004, Sony released Playstation Portale™ (PSP) for real-time 3D graphics
gaming applications and other multimedia such as MPEG video and MP3 audio in
battery-operated consumer electronics products [17]. It contains all necessary
hardware blocks required in handheld video gaming system, including a MIPS
processor with vector floating-point unit (FPU), 3D graphics module and media
processing unit. The PSP features 4MByte of embedded DRAM to boost internal
memory bandwidth and support Read-Modify-Write operations for 3D graphics.
Figure 1.3-4 shows the 3D graphics module implemented in the PSP. The
graphics module consists of surface engine and rendering engine. The surface
engine reduces the model data size by supporting high speed tessellation for
Bezier and Spline surfaces while increasing reality of graphics images. It also
supports hardware transformation and lighting operations, and more advanced
graphics algorithms such as geometry and vertex blending for skinning and
morphing. Four parallel pixel pipeline of the rendering engine can draw various
types of graphics images at the speed 664Mpixels/s at 166MHz operating
frequency. Although the conventional bus protocol was used for interfacing with
host system, the direct eDRAM controller attached in the rendering engine can
reduce the memory bandwidth requirements concentrated to external DDR main
memory. This eDRAM controller also. allows host system to access directly video
memory for flexible memory operations. The media processing unit equips

hardwired H.264 codec for MPEG accelerations and virtual media engine for

CHAPTER 1 Introduction 14

Surface Engine
H Blend —>» Subdiv.—>» T&L +>» Vsort —» Clip
Interrupt
|
Host
AHB I/F -)
Slave \ 4 Rendering Engine
)] DRAM |} eDRAM
b Setup —> DDA —> TXM = PIXOP —> ~ Tr oMB
AHB 1 T v v
Master | | Bus Bus
-] Matrix 1 | Matrix 2
A

AHB
Slave

[Figure 1.3-4: 3D Graphics Module in the PSP]

real-time reconfigurable audio/video codec implementation while achieving low
power and low cost. However, the relatively high power consumption and
complex system architecture of the PSP make it difficult its application in mobile
terminals such as cell-phones. More optimizations in both of functionalities and

architectures are required.

1.3.4 SC10 by nVidia
nVidia's SC10 is a companion chip for handheld devices such as PDAs and
cell-phones, accelerating images, video, 2D and 3D graphics [18]. Figure 1.3-5
shows chip block diagram and 3D graphics engine. It operates with assumption of
host processor and external memory, and interfaces with host processor from 8-bit
to full 32-bit I/O. The equipped full duplex hardware MPEG-4 codec and serial
bus interface for camera control with own LCD interface enables various
multimedia solutions in a single chip. The SCI10 distinguishes itself from other
architectures by implementing pixel-level programmability such as blending and
combining operations for more realistic graphics images on handheld displays. The

embedded 1280kB SRAM provides large vertex cache for reducing external

CHAPTER 1 Introduction 15

memory accesses. Although setup unit of the graphics engine relieves the burden
of host system by performing simple transform, clip and culling operations, the

lack of dedicated geometry engine and slow off-chip host interface limit the

performance to less than 1Mvertices/s at 75SmW power consumption.

. Host CPU
8/16/32-b
32-bit Host Bus Interface F—L—> +
Sys. Mem
MPEG4 MPEG4 JPEG
Encode Decode Decode 1S&D;2it (332:2
CIF@30fps CIF@30fps 3MP
,| Video Input .
SMP 1280kB 128-bit SRAM 128-bit
3D Engine
<« sPB_ |
Main LCD
<“—> (640x4
EJPEg 64-bit Graphics Flat Panel (640x480)
ncode 2D Engine Controller Interface
3MP »Sub LCD
[Figure 1.3-5 (a): nVidia's SC10]
Host > Setup Vertex Buffer
Raster
» Gatekeeper
¢ Mem Read
<—
Data Fetch
Texture Cache

Data Write

Write Buffer
—————>

Mem Write

[Figure 1.3-5 (b): Graphics Engine in the SC10]

1.3.5 Others

Recently, a hardware rasterization architecture for mobile phones was presented

by Akenine-Moller, et al [5]. The proposed architecture focused on reducing

CHAPTER 1 Introduction 16

memory accesses to external memory in rendering of textured triangles. The
inexpensive multi-sampling anti-aliasing scheme, a new texture filtering method
with texture minification and compression, and a scan-line based z-culling scheme
shows the relatively moderate performance in software-only implementation on
commercial cell-phones. Mitsubishi's Z3D core, intended for mobile phones,
utilizes clock gating to achieve the lowest power consumption in spite of a
floating-point geometry engine and 1Mbits embedded SRAM [19]. Also, a 3G
baseband processor with 3D capability [20] and embedded RISC processor with
geometry FPU [21] are trying to realize 3D graphics on mobile platforms.

Standard software graphics APIs for embedded systems have also been released.
One example is OpenGL-ES, which is subset of desktop Open-GL [22].
OpenGL-ES adopts optimizations such as fixed-point operations and redundancy
eliminations for mobile devices with low processing power, while enabling fully

programmable 3D graphics such as vertex and pixel shading

1.4 Architecture Summary of Mobile Multimedia Hardwares

System Bus
(On or Off-chip) 4 >
Graphics
IP Graphi w
Host raphics | = LCD
cPu €7 Processor |
o Shared
ain with
[Memory | Hosts MEM I/F
Graphics i
T Graphics
I/F Memory
A
(a) As Peripheral (b) As Standalone Processor

[Figure 1.4-1: Categories of Mobile Multimedia Hardware]

Integration philosophy can categorize the listed mobile multimedia hardwares in

the previous section into two parts — as peripheral intellectual property (IP) or

CHAPTER 1 Introduction 17

Integration
As peripheral As standalone processor
Feature
PowerVR's MBX KAIST's RAMP-IV
Traditional « OpenGL-ES compatible ARM IP | « Full 3D pipeline with texturing
3D graphics | , On-chip bus interface « 28Mb embedded DRAM
* Tile-based rendering ¢ Limited functions (GE)
nVidia's SC10 Sony's PSP
Multiple ¢ 2D/Camera video processor and | * Single chip LSI with H.264, 3D
functions pixel-shading GPU and reconfigurable processor
¢ Off-chip companion interface * 4MB embedded DRAM
¢ Lack of geometry engine ¢ Not low power consumption

[Table 1.4-1: Summary of Mobile Multimedia hardware]

as standalone processor. Figure 1.4-1 shows the conceptual block diagrams of
these categories and Table 1.4-1 summarizes the features of the related works.

Conventional bus architecture and complicated floating-point design is not
suitable for mobile multimedia in terms of power consumption and balanced
performance.

In the conventional works, PC graphics architecture [1-3], which has its roots in
traditional workstation graphics system [16], has been applied to various consumer
electronics and battery-operated devices. Hence, PC graphics can be used to
consider design issues for mobile terminals. The graphics processing unit (GPU)
in the PC system contains large vector floating-point units (FPUs) with special
instructions for graphics operations. The main CPU invokes the GPU using the
system bus interface. However the available system memory bandwidth is not
sufficient to support both the CPU and GPU. In the GPU architecture, several
pixel engines work in parallel to boost performance, fetching data from dedicated
T$ (texture cache) and P$ (pixel cache) memories. The external memory interface
(EMI) merges transactions from cache memories and transfers them to off-chip
memories assigned to graphics processing. The memories are connected to the
EMI through a high-speed crossbar switch. Burst-mode operations are used to

fully utilize the available memory bandwidth. Although each cache element and

CHAPTER 1 Introduction 18

FPU can be power-efficient, the massive structure and high-speed crossbar of the
GPU cannot be applied directly to mobile terminals that lack sufficient computing
power and memory capacity. In addition, modern baseband chips and mobile
platforms such as Qualcomm's MSM chip [20] or TI's OMAP [23] employ
power-efficient ARM processors of integer datapath, and are implemented as
system-on-a-chip (SoC) optimized for battery-operated mobile devices.

This research is proposed as responses to these concerns. It utilizes a simple
ARM coprocessor interface or dedicated buffer connected to an energy-efficient

fixed-point graphics accelerator with specific local memory.

1.5 Contributions of This Research

Since the rasterization and texture mapping require more processing complexities
than the rest of operations in the 3D graphics pipeline, most of graphics
architectures have mainly focused on the rendering pipeline and achieved the
efficient graphics performances. However, since relatively little attention has been
given to 3D geometry operations, now they become the performance barriers in
3D graphics pipeline. Moreover, the previous designs of mobile graphics
architectures seem to be too complicated to be applied to PDAs and cell-phones
or to provide limited functionalities such as lack of geometry engine and
programmability. Especially, the variety of mobile applications requires generality
as well as high performance. Therefore, [proposed and implemented
programmable 3D graphics processor for mobile application. It can fill the gap
between the flexible high performance 3D geometry systems and the low power
wireless platforms with limited system resources. The proposed hardware
architecture has four major features:

(a) Separation of data transfer flow is proposed for efficient hardware and

bandwidth utilization. Different from previous works, the ARM coprocessor

CHAPTER 1 Introduction 19

architecture, that is an instruction extension mechanism of ARM platform, enables
optimized performance throughput while achieving easy programmability.

(b) Full hardware accelerations with stream processing are achieved to boost-up
the sustained performance in compact and fast hardware. Various low power
techniques in both of instruction set and its micro-architecture along with clock
management are implemented for low power consumption. The producer-consumer
locality, that are frequently observed in stream multimedia operations such as 3D
graphics, is also considered in hardware design.

(c) Two level extensions of instruction set architecture are implemented for
programmability and parallel processing. The added multimedia instructions by the
coprocessor architecture is once again extended to more optimized graphics
instructions by dual operations, in which concurrent operations of graphics
coprocessor with main processor are enabled.

(d) Fixed-point SIMD processing is employed for low power consumption and
low cost implementation. It exploits data level parallelism in graphics processing

while keeping the power consumption low.

CHAPTER 2 System Architecture

20

CHAPTER 2

System Architecture

2.1 Model of 3D Graphics Computing

. Y
Dls_play GL Command
Lists /

0.00~0.43

0.50~4.00

N

Application

Geo;;ietry
Raste;;zation

Texture
Memory

Frame
Buffer /

0.40~1.60

Texture

Fragment
Display

0.00~0.43

0.27~0.55

0.18~0.43

2.00~4.40

1.00

0.06~0.08

f

15Mcmd/s

TL

5Mvert/s

100Mpix/s

10Msample/s

|

[Figure 2.1-1: Communication Bandwidth in Graphics Pipeline]

The whole system performance of graphics hardware is dependent not only on

the performance of the individual hardware acceleration blocks but also on the

communication cycles for transferring the graphics data between memory and

processing elements. Figure 2.1-1

summarizes communication bandwidth i1n

various points of graphics pipeline operating at 5SMvertices/s 100Mpixels/s with

640x480 display in terms of gigabyte (GB) per second [24]. From the figure,

typical mobile graphics requires total bandwidth ranging from 4.8GB/s to

CHAPTER 2 System Architecture 21

12.5GB/s, however, which is difficult to achieve in conventional 32-bit SDRAM
running at 100MHz. Since much of required bandwidth are consumed in local
traffic among processing elements, concept of stream processing as well as
optimizations arithmetic circuits should be considered to reduce explicit
communication costs. Each context in graphics hardware needs appropriate local
memory for buffering intermediate data, yielding low external memory requests.
So, it can be thought the following model of 3D graphics computing shown in

Figure 2.1-2 from a hardware implementation's point of view.

GE RE
Cmd Cmd
e e B S
GL GE RE
Prog. Data Data
Main Main Main
Memory Memory Memory

[Figure 2.1-2: Model of 3D Graphics Computing]

There are three processing elements with their own local memory — application
(APP), geometry engine (GE) and rendering engine (RE). Although real
implementation may contain dedicated graphics memory chip with hardware
accelerators, all external data including application program, vertex model and
calculated pixel output are conceptually stored in main memory owned by host
processor. However, FIFO memory can be used to interconnect among processing
elements for intermediate data. These intermediate data may be commands or
instructions for next processing elements, or may be temporary output of previous
processing element. In real implementation, direct connections or shared bus can

be employed in place of FIFO memory.

CHAPTER 2 System Architecture 22

2.2 Separation of Data Transfer Flow

As described in the previous section, the communications of graphics data in
pipeline are crucial concerns in designing hardware, and many implementations
use single or multi-layer bus architectures [15][17-21]. However, 1 proposed a
mobile graphics processor architecture using coprocessor interface to implement
the model depicted in the figure 2.1-2 [25-26].

In the modern embedded RISC processor such as ARM platform, the
coprocessor is defined as a general mechanism for extension of instruction set
architecture [27] as shown in Figure 2.2-1. ARM coprocessors have their own
private register set and state, and these are controlled by coprocessor instructions
that mirror the ARM's instructions controlling ARM's register set. The ARM has
sole responsibility for control flow, so the coprocessor instructions are concerned
only with data processing and data movement. Following RISC load-store

architectural principles, these categorizes are cleanly separated.

ARM Coprocessor
Data Movement i Co-Proc.
(MOV,LDR,STR...) Data Movement Co-
Proc.
ARM Data Processing | Co-Proc. Reg.
Reg. (ADD, SUB,...) Data Processing
Control Flow
(B, BL.,...)

[Figure 2.2-1: Coprocessor Architecture]

Figure 2.2-2 shows data transfer flow of the proposed mobile graphics processor.
In this data flow, hardware-instruction path and graphics-data path are separated
physically from each other to improve the stream processing within allowed
memory bandwidth. The coprocessor interface, which connects GE to the ARM10
processor, is used for GE instruction transfer. RE is connected to the GE through

the vertex FIFO, which is also used for RE instruction transfer. The system bus

CHAPTER 2 System Architecture 23

interfaces are used only for vertex and pixel data transfers. Since the data cache
of the ARMIO processor can be shared with the GE to store the graphics
primitives such as input-vertex-model data, the GE does not need additional cache
system. The vertex data stored in the data cache of the ARMI10 processor are
transferred by vertex-attribute-move instruction of the GE, which is mapped into
the coprocessor register transfer instruction of the ARMI10 processor. The output
pixel data are transferred between the graphics cache of the RE and the external
memory through the system bus interface. The separation of instruction and data
paths increases processing parallelism of the hardware blocks and reduces the
required bus arbitration cycles. Therefore, directly coupled design is achieved in
instruction transfer path for easy control of processing elements. And, shared bus
design is used in data transfer path for easy memory management such as unified
memory map architecture and efficient direct memory access (DMA) among

memory space.

External Memory

]
MEM]
CTRL : Data Path:
Syst B AGra hics Data ! Shared Bus
p ystem Sus y |CTP , | Design
N A A 4]
Input Vertex Data Output Pixel Data]

Graphics
D$ Cache

s ARM-10 4> Co-Proc L) Geometry L) Vertex L Rendering

IIF Engone FIFO Engine
Vertex Shader Rendering Engine
Instructions Instructions

Instruction Path: Directly Coupled Design

[Figure 2.2-2: Data Transfer Flow]

The coprocessor architecture shows many benefits over conventional multi-layer
bus architecture in implementing model of 3D graphics computing. Figure 2.2-3

visualizes differences between coprocessor and bus architectures. Conventional bus

CHAPTER 2 System Architecture

24

ARM GE RE MEM
| D
CMD DATA CMD DATA CMDI DATA L
h —- :\ 1] ﬁ
— Sl Multi-layer
¢ = = S=p) Bus
¢ L = =)

(a) Bus System: Impossible to separate intermediate

™~ Should share ARM's data port with

IPs' command ports

command transfers from data transfers

ARM =MD G SMD Re MEM
| D _ _
CMD | DATA DATA DATA L
— ./ d
— Sl Multi-layer
: | —’ Bus
¢ =)

(b) Coprocessor System: Complete separations of command
and data transfers

[Figure 2.2-3: Bus System and Coprocessor System]|

architecture implies that additional hardware block attached in memory space
should be connected with data port of main processor [28]. This is because
modern doesn't have for

embedded RISC processor dedicated port

memory-mapped components. Therefore, as shown in Figure 2.2-3(a) the
command transfers of hardware blocks should use shared bus with main memory
transactions, causing inefficient utilizations of processing elements. In addition, the
multi-layer bus architecture requires complex interconnections including multi-port
arbiters with long and wide global metal wires, yielding high power consumption.
Also, concentrated data transactions may cause heavy bus arbitrations, and main
processor should always consider thread synchronizations in invoking bus-attached
hardware blocks. On the other hand, the coprocessor system depicted in Figure

2.2-3(b) shows the following features.

CHAPTER 2 System Architecture 25

(a) Direct signal path with short distance in coprocessor interface provides
simple interconnections. Coprocessor shares bypassed instruction port with main
processor. They don't need the bus arbitrations for hardware accesses contrary to
conventional bus-attached hardware accelerators. Therefore, coprocessor interface
can reduce the unwanted stalls between main processor and hardware accelerators,
and thus relevant power consumption.

(b) Since the coprocessor operates in lock step with core pipeline of main
processor, it can avoid a complex synchronization and provide a single thread of
context.

(c) The data cache of main processor can be shared with coprocessor to store
graphics primitives as well.

(d) Since commands of coprocessor are regarded as the extended instruction set

architectures of main processor, easy programmability can be achieved.

2.3 Full Hardware Accelerations with Stream Processing

For high sustained performance, I implemented the graphics processor enabling
full hardware accelerations of graphics pipeline including geometry stage. Figure
2.3-1 shows the block diagram of the proposed programmable graphics processor.
It consists of an ARM10 compatible 32-bit RISC processor with 16kB I/D caches,
a 128-bit programmable fixed-point SIMD vertex shader, a low power rendering
engine and a programmable frequency synthesizer (PFS). The RISC processor
controls the whole system, operating at 200MHz. The vertex shader is
implemented as an ARM10 coprocessor and processes all per-vertex and geometry
operations such as matrix transformation and lighting calculation by executing
vertex programs. The primitive assembly such as clipping and culling is also
performed by the vertex shader in collaboration with the RISC processor. Since

the vertex shader is configured as an ARM10 coprocessor, the single thread of a

CHAPTER 2 System Architecture 26

I$ /\ PFS
16kB
2 2
ARM10 LN QR PR Clock
D$ CTRL
16kB U
A <
v 90b
Coprocessor Interface PLL
A90b
¥
4 CLK
Vertex Shader E
Fixed-point 2kB 32kB §
SIMD Code Display N
Datapath Memory || Memory C:)
- € o Standard
= External 32b, Asynchronous
128b S 32b Y
* g [¢ P Memory ——> sRAM
Vertex FIFO - Controller Interface
4 128b a
Y
Rendering Engine 5
4
SlimShader [€ n
Trlanglel Setup Graphics Cache
Engine
Pixel l_| 8kB Depth . 32b i 56b External
‘ Processor ‘“_V‘ Cache w < 9| Peripherals ﬁ xl;e(;n
‘ Texture ‘M 6kB Texture ; 32b N
Engine A Cache i 14
‘ Pixel ‘M 12KB Frame | | =
Blending A Cache \/

[Figure 2-3-1: Block Diagram of Graphics Processor]

software context running in the ARMI10 processor controls the vertex shader by
the extended coprocessor instructions. The vertex shader operates at 200MHz in
lock with the ARM10 processor, and there is no complex synchronization like bus
arbitration. The rendering engine employs a low power 128-bit SlimShader pixel
engine [29] with 26kB dedicated graphics cache system. The rendering engine is
responsible for the rasterization and the per-pixel operations such as pixel
blending and texture mapping. It is connected to the vertex shader through
internal vertex FIFO that can store 128-bit wide 8-entries encoded instructions.
The rendering engine instruction is composed of transformed vertex coordinates,
texture coordinates and lit vertex color. The operating frequency of the rendering
engine is as low as 50MHz to reduce power consumption. The PFS reduces the

dynamic power consumption of the chip by clock gating and frequency scaling. It

CHAPTER 2 System Architecture 27

supports four clock domains and clock of each domain can be controlled by
software.

Since the data transfer flow depicted in the figure 2.2-2 was implemented in the
graphics processor, input vertex stream can be fetched to ARMI10's data cache
memory, which can be shared as input vertex buffer for the vertex shader, while
the vertex shader itself is operating. Also, output vertex stream can be transferred
to the rendering engine from the vertex shader without stall of cycles by means
of the vertex FIFO. Only final calculated pixel output stream are produced to the
external memory, and all intermediate data transfers are separated from traffic of
the global system bus. Therefore, full hardware accelerations with this stream

processing capability achieves high sustained performance.

2.4 Two Level Extensions of Instruction Set Architecture

For easy programmability and efficient parallel processing in graphics and other
multimedia applications, two level extensions of instruction set architecture is
realized in the implemented graphics processor. Different from the conventional
ARM coprocessor architecture [27][30], the graphics processor has dual operating

states as shown in Figure 2.4-1. The first state is tightly coupled coprocessor

ARM10 Vertex ARM10 Vertex

Shader Shader

ARM Vertex

i Program Program

| ARt 2

| SMDnst.3 || oors
Program

(a) TCC State (b) PP State

[Figure 2.4-1: Dual Operations]

CHAPTER 2 System Architecture 28

(TCC) state. In this state, the vertex shader in the graphics processor operates as
a normal ARMI10 coprocessor. Its instructions are issued by the ARMI10 processor
as the extended coprocessor instructions, and they are conditionally executed to
maximize their execution throughput. They do not affect the memory and registers
unless the arithmetic flags (negative, zero, carry out and overflow) of the ARMI10
processor satisfy a condition specified in the instructions. In the vertex shader,

SIMD control flags such as arithmetic flags, saturation, overflow and underflow
are updated after execution of every SIMD data processing instructions and can
be moved to program status register (PSR) of the ARM10 processor. The general
SIMD instructions such as arithmetic and movement operations are implemented
in the TCC state, performing clipping and back-face culling operations in 3D
graphics pipeline.

The second state is parallel processor (PP) state [31]. In this state, the vertex
shader behaves like an independent processor and it does not need any control
from the ARMI10 processor. The PP state has a separate graphics instruction set
different from the general SIMD instructions of the TCC state. The vertex shader
executes the independent vertex program codes while the ARMI0 processor
performs its main application program or enters even into cache miss. Various
user-defined vertex processing operations such as geometry transformation and
lighting calculations can be performed for the current vertex input while next
vertex data is fetched from the ARMI10 processor. In order to maintain the
communication protocol of the ARMI10 coprocessor interface, the vertex shader
drives coprocessor busy (CPbusy) signal to the ARM10 processor in the PP state,
blocking next coprocessor instruction from the ARMI10 processor for
synchronization.

Therefore, 1 extended the instruction set architecture in two levels for

conventional RISC processor as shown in Figure 2.4-2. The general SIMD

CHAPTER 2 System Architecture 29

Coprocessor Dual Operations Code
Extensions Extensions Mem.
ARM ARM [« CP ARM CP
ARM ISA ARM ISA ARM ISA
(R2 = R0 ADD R1, (R2 = R0 ADD R1, (R2 = R0 ADD R1,
R2 = R0 SUB R1) R2 = R0 SUB R1) R2 = R0 SUB R1)
General SIMD ISA General SIMD ISA
(VGR2 = VGRO ADD VGR1, (VGR2 = VGRO ADD VGR1,
VGR2 = VGRO SFL VGR1) VGR2 = VGRO SFL VGR1)
Graphics ISA
(VGR2.xyzw = VGR0O ADD
VGR1.wzyx,
VGR2 = VGRO DOT VGR1,
VGR2 = VGR0O RSQ VGR1,
VGR2 = VGRO TFM VGR1)

[Figure 2.4-2: Two Level Extensions of ISA]

instructions are firstly extended by the coprocessor architecture. By this extension,
various multimedia operations such as 2D image processing and digital signal
processing (DSP) applications can be easily programmed in mobile platform.
Table 2.4-1 shows performance of various DSP kernels such as filter and dot
product in the implemented graphics processor, and which achieves comparable

performance with conventional DSP extension [30].

DSP Kernel This Work Intel WMX [30]
%NT (T < 48) -
N sample T tap FIR filter 9 SNT (T=<48)
ZNT (T < 32)
16
N N
N sample min or max 5 5
N dimensional dot product %N %N
N dimensional vector sum N N
Add-compare-select (4 sample) 3 3
Absolute difference (4 sample) 3 3

[Table 2.4-1: DSP Performance of Graphics Processor]

CHAPTER 2 System Architecture 30

Beyond the first extension, the graphics instructions are secondly extended by the
dual operations from the general SIMD instructions. The vertex shading
instructions that are highly optimized for graphics applications [9] are enabled in
this step by graphics extensions such as write masks and source swizzle. And,
more specific data processing instructions such as reciprocal square root and
matrix transformation are added to basic SIMD architecture. Moreover, enabled
parallelism of the ARMI10 processor and the vertex shader by dual operations
gives high throughput to seamless input vertex stream. Figure 2.4-3 illustrates
performance gain by the dual operations in full 3D geometry calculation. The
extended instruction set architecture of the PP state achieves 78% performance
improvement compared with case using only the general SIMD instructions of the

TCC state.

Geometry A
Processing
Speed
(Normalized) 1.78 —

78% Increase
by
Parallel Processing

0.25

Conventioal
Integer TCC Only TCC + PP
SIMD [30]

[Figure 2.4-3: Performance Gain by Dual Operations]

2.5 Fixed-point SIMD Processing
Most of multimedia data such as 3D graphics require real number representation
to support various graphics algorithms. In this work, fixed-point number

representation shown in Figure 2.5-1 is used instead of floating-point number

CHAPTER 2 System Architecture 31

Bitindex b, b, b b, by b, b b b, €{0,1}

Value 20| 22 2! 2°L2\‘1 27227 2™
fraction point

‘ sign L’n-bit integer parﬂ n-bit fraction part ‘

[Figure 2.5-1: Fixed-point Number Representation (ex: Q4.4)]

format [32]. Simple integer datapath of fixed-point unit can achieve higher clock
frequency while consuming less power than floating-point unit, yielding total
energy reduction. For typical 3D matrix transformation, gate level simulation of
4-stage pipelined 32-bit fixed-point multiplier showed 30% higher maximum
operating frequency than 6-stage pipelined single-precision floating-point
multiplier. In addition, the fixed-point multiplier consumed only 83% power of the
floating-point multiplier at the same operating frequency. Consequently, when the
fixed-point arithmetic is applied to graphics applications, 36% of total energy
consumption can be saved on average (Figure 2.5-2).

Power 4 17 % Less
Consumption Power Floating-Point

l Arithmetic Unit

Fixed-Point 24%
Arithmetic Unit _ Faster

>

Execution Time

Notes) Measured during transformation operations

[Figure 2.5-2: Energy Reduction of Fixed-point Processing]

To evaluate the accuracy of fixed-point arithmetic in the 3D geometry
operations, the following equations can be used to decide the number of bits for
fractional part, ng, of Qmn fixed-point number [33], where the 'm' is the number of
bits representing integer part and 'n' is the number of bits representing fractional

part.

CHAPTER 2 System Architecture 32

For transformation,

n,=n,+3+ {logz (1+ distance of far plane from eye -‘

distance of scene vertex to eye
for lighting,

n,=n,+8 or n,+9
where 'n,' is the number of bits required for securing the accuracy in

transformation and lighting calculation.

Since the screen resolution and color depth of mobile terminals are relatively
small, 32-bit fixed-point system can generate final graphics images with
unnoticeable accuracy loss compared with typical floating-point system. For
example, minimal 14 or 16 bits are enough for fractional part to represent the
vertex data for QVGA (320 x 240) with 16-bit color depth, which is common to

the displays of today's mobile devices.

(a) Floating-point (sphere) (b) Fixed-point Q16.16 (sphere)

Error in Vertex Positioin
(Typical)
Floating-point : 0.45037

Fixed-point : 0.45034

(c) Floating-point (horse) (d) Fixed-point Q12.20 (horse)
[Figure 2.5-3: Accuracy Comparison of Fixed-point Processing

(Sphere: 5068 Vertices, Horse: 6798 Vertices]

CHAPTER 2 System Architecture 33

In order to measure the accuracy of fixed-point arithmetic in graphics operations,

the rendered images of 3D objects using software only floating-point graphics is
compared library with the proposed hardware architecture using fixed-point
graphics library. In Figure 2.5-3, lighted, smooth-shaded spheres with different
material properties and 3D character with animations are rendered to show
reliability of the proposed graphics processor. From the results, I can show that
under vertex-level accuracy, the maximum transformed distance between
floating-point and fixed-point systems is less than 0.000025 for Q12.20 fixed-point
format and 0.0002 for Q16.16 fixed-point format.

2
Performance

Performance Index = .
f Area* Power Consumption

Silicon Cost
@ (Gate Count)

A
7/
/ ® Power
/ 7 Consumption
Measure (mWw)
Unit
g Processing
o———© - | Sp.eed
(Vertices/s)
0"
o—
Performance
Index
—

T T >
32-bit 32-bit 64-bit 64-bit 128-bit 128-bit 256-bit
4way 2way 4way 2way 4way 8 way 8 way

[Figure 2.5-4: Comparison of Various Fixed-point SIMD Configurations]

Many operations in 3D graphics and other multimedia applications shows
data-level parallelism, in that same operations are concurrently and independently
performed with multiple samples such as position coordinates of vertices or color
values of pixels. Before applying SIMD architecture for fixed-point 3D graphics

system, [analyzed various SIMD configurations while executing 3D geometry

CHAPTER 2 System Architecture 34

operations. Figure 2.5-4 visualizes the overall performance index for each SIMD
configuration. The performance index was chosen to consider multiple design
constraints such as processing speed (vertices/sec), silicon cost (gate counts), and
power consumption (mW) at the same time. Since, at least 14 or more bits of
fractional part are required to represent fixed-point number in graphics operations,
I assumed that each fixed-point operation in this analysis should be performed in
32-bit fixed-point number. Moreover, OpenGL-ES, the standard of embedded
graphics library, requests to support Q16.16 fixed-point format in number
representation [22]. From the gate-level simulation of each SIMD configuration,
128-bit 4-way fixed-point SIMD configuration was found to achieve the most
optimal performance. When the length of SIMD width is less than 64-bit, the area
cost caused by arithmetic circuits becomes dominant in performance index.
However, as SIMD width is more wider, net interconnection area and relevant
power consumption surpass the increase of processing speed. Therefore, 1|
implemented that the proposed architecture utilizes 128-bit wide 4-way SIMD
instructions, which allow it to concurrently process up to four 32 bit fixed-point

data elements in a single cycle.

2.6 System Analysis

Blocking Non-blocking
Read Write
Input Processing
FIFO Element o;::%'t
(%) (M,)

Graphics
Data

External Memory (W)

[Figure 2.6-1: Graphics Processing Element]

CHAPTER 2 System Architecture 35

In order to analyze various characteristics of the graphics computing model and
the proposed graphics processor mentioned in the previous sections, I adopted the
simplified model of graphics processing elements shown in Figure 2.6-1, where

My is the intrinsic computing power of processing element and,

o 1s the issue efficiency of input FIFO and,

d is the capacity of local memory in processing element and,

W is the provided memory bandwidth between local memory and external
main memory.

Assuming that total 'n' vertices are divided to batches of size '0' and each batch
is processed with iterating loop for each vertex at one time independently, the

batch processing time 1} can be represented as,

my
T, = C,+ *b+ T 1
b N d (D

where Cy and Mg are constants and 1 is delayed time by external memory
transfers from local memory. (o is the sum of initialization and epilogue time
such as matrix, lighting parameter setting. M is the cycle time consumed in

performing one loop iteration for single vertex input.
If the capacity of local memory is sufficient, the processing element can operate
while fetching next batch into the local memory simultaneously. Otherwise, the

processing element should wait for finishing execution of current batch in order to
complete the fetch of next batch. Generally, 1) is the function of the following
form.

T,= Ty(d, b,n w T) 2)
where T is total amount of time for processing all vertices.

From the above considerations, Iy can be represented as,

CHAPTER 2 System Architecture 36

for low bandwidth

([Cib b j* d—b Cib, b nC,
R L T ®
for medium or high bandwidth
Cb, p nC
T,= —;* 1 w = Tl “4)

where 01 is constant related with the size of each vertex in batch. The

probability that the processing element decides to fetch next batch in the unused

— b . . .
———, and in this case some portions

d

space of local memory is proportional to

of time for fetching next batch can be overlapped with processing time of current
vertex batch. Moreover, if w is high enough, the batch fetching time can be hided
completely. In the case that capacity of local memory is not sufficient, the
processing element should fetch the next batch in the currently used space of
local memory, causing the processing element waiting for finishing graphics
operations.

Finally, total execution time can be computed as,

T = T,* % (5)

After substituting equation (3) and (4) into equation (1) and then using equation
(5), I can find that graphics performance (P), processing speed per second, is

represented as,

9_ b o
n d nl;
_ e <
P=F=7c—m C W=7 ©
T AT
P=2 = 1 w> G 7)

CHAPTER 2 System Architecture 37

In order to verify the characteristics of above analysis model, I simulated the
proposed graphics processor with changing various parameters such as bandwidth
and memory capacity. The employed input graphics model is the light-shaded
sphere composed of 100k vertices, and each vertex is assumed to be drawn only
once. In the implemented graphics processor, the coprocessor interface with the
ARMI10 processor issues graphics commands such as vertex index to the vertex

shader. So, the issue efficiency p, is related with data cache hit ratio, which is

about 0.9 roughly in this analysis. Since the rendering engine in the graphics
processor is sufficiently fast, vertex FIFO can be regarded as infinitely capacitive
output queue for the vertex shader. In a typical mobile device, a 32-bit SDRAM
memory running at 100MHz is used as the external main memory I restricted the
provided peak bandwidth to be less than 400MB/s.

Figure 2.6-2 shows the relationship between the capacity of local memory and
the graphics performance when the provided memory bandwidth is 100MB/s. As
the capacity is increased, the performance is also increased. However, the
performance is saturated to peak value if the capacity is more increased. In this
analysis, 16kB capacity achieves 99% of peak performance and 32kB capacity
shows almost maximum performance.

Figure 2.6-3 shows the relationship between the provided memory bandwidth and
the graphics performance. Similar to the capacity of local memory, the
performance is increased as the memory bandwidth is more provided. However,
the slope of performance improvement is more declined in the region of high
bandwidth than in the region of low bandwidth. This is because the performance
is more dependent on the computing power provided by the processing element
and the vertex streaming characterized by the batch size and the memory capacity
than the memory bandwidth if the bandwidth is sufficiently high. In this case,

ideally, the processing element can fetch next vertex from main memory

CHAPTER 2 System Architecture 38

Processing Speed
(Vertices/s)

Processing Speed
(Verticesl/s)

3.2M

3.4m ___,’—'——

T]
3.0M =

2.9M- -/.
2.8M- ./
2.7M-

2.6M

2.5M -

2.4M

[Figure

3.0M-

2.5M-

2.0M+

1.5M-

1.0M+

0.5M+

0.0M

0 10 20 30 40 50 60 70

Capacity of Local Memory (kB)

2.6-2: Performance versus Capacity of Local Memory]

T T T T T T T T
0 100 200 300 400
Bandwidth (MB/s)

[Figure 2.6-3: Performance versus Bandwidth]

CHAPTER 2 System Architecture 39

seamlessly while executing current vertex. The simulations recognizes that the
memory bandwidth more than about 70MB/s is sufficient for vertex streaming in
mobile applications.

Figure 2.6-4 shows the relationship between the batch size and the performance
with varying the memory bandwidth. As the batch size is increased, the
performance is also increased due to distributions of initialization and epilogue
time over each vertex in batch. More increase of the batch size, however, causes
the decrease of performance because local memory cannot sufficiently buffer all
vertices in the batch. Since smaller batch size yields lower memory transfer time

(T'y) which is more easily hided by processing time (71}3), the optimal batch size

is inversely proportional to the bandwidth as illustrated in the figure.

@ 50MBIs
> o @75MBIs
- JOCIIOININY, | A @ioowsis
] X ﬂv —v—@150MB/s
] Y
2.8M /X; ‘\\v\
]) \§
A
2 2.6M- / "
o _) ‘ S
» 2 2.4 N “v
€3] QOQO.COOQQOC.OOOQ.Q A v
BE 22 c""“ . \‘\A vy
V.
g3 - ‘ ® a v
0 2.0M- o o
2] _—
o | N
1.8M- . ‘.. N
- [J
1.6M] .
1.4M]
b I ' ! ' T T T T T |
0 200 400 600 800

Batch Size (Number of Vertices)

[Figure 2.6-4: Performance versus Batch Size]

CHAPTER 2 System Architecture

40

Finally, Figure 2.6-5 shows the relationship between the performance and batch

size with varying the format of vertex data. When using the more smaller format

by geometry compression, the graphics processor provides more higher
performance.

b —— 24Byte Vertex Format
3'2M__ — —@— 32Byte Vertex Format
3.0M ,uuuuu'm — A 40Byte Vertex Format

L "” —W— 48Byte Vertex Format
2.8M+ , \- 56Byte Vertex Format
2 6M—- ‘\. 64Byte Vertex Format

° R on
o n
—~ 2.4M \AAMAAMAMALLLLLLLAL L gu
» 2] A \‘\!l'
gg Z'ZM__ A A\:Q..l.
2t 20md / VYYYYVVYYYVVYYYYYYYYYYY, (e e
82 1 v VAL "
ST q8amd 4 v A, %, tEmg
o 1 Tv Ay %eq,
1.6M] v Vy A, %ee,
v, ‘Aa *

4 Vv Ay
1.4V Vg A

4 vavvv
1.2M-
1.0M T y T y T y T y T y T '

0 200 400 600 800 1000

Batch Size (Number of Vertices)

[Figure 2.6-5:Performance versus Batch Size with Various Vertex Format]

CHAPTER 3 Design of Graphics Processor 41

CHAPTER 3

Design of Graphics Processor

3.1 Fixed-point SIMD Vertex Shader

3.1.1 Internal Architecture

Figure 3.1-1 shows the user-programmable fixed-point SIMD vertex shader
implemented in the graphics processor [34][35]. The vertex shader is a 128-bit
4-way SIMD ARMI10 coprocessor, and it consists of two parts — control and
datapath. In the control part, there is a 2kB code memory that stores vertex
program codes of graphics instructions. Vertex program control unit (VPCTRL)
issues the graphics instructions without control of the ARMI10 processor. The
general SIMD instructions are transferred through the coprocessor interface and
the contents of control register determine its operating state. The two operating
states — the TCC state and the PP state share all of the hardware blocks except
instruction fetch units.

In the datapath part, there is a fixed-point vector unit that is responsible for all
SIMD arithmetic operations such as addition and multiplication. Special function
unit (SFU) is responsible for reciprocal (RCP) and reciprocal square root (RSQ)
operations. Most of the operations are performed in 32-bit fixed-point numbers,
and achieve a single cycle throughput. For streaming graphics processing, the
vertex shader contains multiple register files — input vertex registers (VIR), output

vertex registers (VOR) and general SIMD registers (VGR). The input vertex

42

auibug Bulapuay
(snq puewwos) qgz} Aﬂ

CHAPTER 3 Design of Graphics Processor

edeje, 0.4Uuo
Ol Xemon yredejeqg Jo4uo)
_ _ J9)sibey |
Jouoy |
Z ¥OA 1 ¥OA 0 JOA | usdA
1|
YSeN)M | | YSBIN LM | | %SeIN M N
A
+ + ajels
e & a8zt (sasnq a1)
\\(= aszL 1410 P q06
(XMIX) jun 10308\ | k] P all HLSNI di A””V
uiod-paxi < 5 0L-INYYV
jun julod-paxi4 N o3a HISNI m. anis Jd0.d-0Q
uonoung ULSNI Eap
|eloadg -
[0do] [gdo]| [wdo] A4
4 A A A
YSe 3JIM ﬂ|‘ 1o4ng 1 | m...mz_
ZMS solyaelo
2AA Keidsig N A
UOA — | aze Asnqdo ﬁ_mn_>
q8zZ1 LY | odv fiowapy A
aszl apoo
ayz [€ THLOdA
dIA

[Figure 3.1-1: Block Diagram of Vertex Shader]

CHAPTER 3 Design of Graphics Processor 43

register file, used to hold the vertex attributes such as position and normal vector,
is fed into the fixed-point SIMD datapath. The general SIMD register file is used
to store temporary results during vertex program execution. The shaded vertex
output is transformed into one of the output vertex register files. There are three
output vertex register files for caching of vertex data in the primitive assembly
and only one of them is accessible in the vertex program. The vertex shader has
the display list buffer, implemented by 32kB synchronous SRAM as local
memory, to store graphics primitives such as vertex data, reducing the traffic on
external memory 1/O. Also, the display list buffer can be shared to hold graphics
constants at the same time for design simplicity of hardware. To enhance the
efficiency of addressing and to avoid the conflicts when accessing display list
buffer, the vertex shader has two integer address registers for indexed display list
buffer reads. In addition, the display list buffer has the following two features.

(a) Auto increment and decrement addressing modes: the address register can be
updated automatically after indexed display list buffer reads, which is useful to
manage the vertex streams.

(b) 8 bit / 16 bit unpack with shuffling of vector components: For geometry
compression, the 8 bit or 16 bit read data from display list buffer can be
sign-extended to the full 32 bit fixed-point numbers, which can be used as the
delta difference between one vertex and the next vertex [36]

The eight-stage single-issue pipeline of the vertex shader is illustrated in Figure
3.1-2 The fetch stage transfers one of the general SIMD instructions and the
graphics instructions from the coprocessor interface and the code memory,
respectively, to the control unit. For programmable shading, operands of the
SRAM display buffer and the SIMD register files are accessed at the same time
in the decode stage. The SRAM address is generated in the early stage of

pipeline, the issue stage. In the execute stage, there are three separated pipelines:

CHAPTER 3 Design of Graphics Processor 44

SIMD arithmetic-and-logic (ALU) pipeline, SIMD multiply (MUL) pipeline and
SFU pipeline. By using 4-way 32-bit integer multipliers with integer shifter arrays
for fixed-point conversion, single-cycle throughput for fixed-point
multiply-and-accumulate (MAC) operations can be achieved. To reduce the design

complexity, register-forwarding logic between pipeline stages is used only in the

general SIMD register file.

F General SIMD INSTR Fetch Graphics INSTR Fetch
| Initial INSTR Display Buf. ADDR SIMD Reg. Index
Decoding Generation Generation
Final INSTR Display Buf. (SRAM) SIMD Reg. Access
D
Decoding Read Forwarding
SIMD ALU Pipeline SIMD MUL Pipeline | SFU Pipeline
E1 || 4-way 32bInteger ALU 4-way 32M"Js Integer cLz
_ . 4-way 32x16 Integer Start
E2 || Pipeline Register (E2-E3) MUL DIVISQRT
T . Carry Propa. Adder Continue
E3 | Pipeline Register (E3-E4) (CPA) Array for Low 32b ||| DIVISQRT
CPA for High 32b
E4 || Pipeline Register (E4-W) CPA
SHIFT Array
w All Register Files Writeback

[Figure 3.1-2 Pipeline Structure of Vertex Shader]

3.1.2 Instruction Set Architecture

In the graphics processor, the two separate instruction sets — the general SIMD
instruction set for the TCC state and the graphics instruction set for the PP state
are implemented. The instruction set in the TCC state contains all data processing
and movement instructions for the vertex shader. These instructions can accelerate
various multimedia functions such as MPEG4 video besides 3D graphics. In the
PP state, the instruction set consists of 20 operations, which are the modified

subset of today's programmable vertex engine [37]. All these instructions utilize

CHAPTER 3 Design of Graphics Processor

45

the fixed-point arithmetic except integer shift instructions for index calculations.

Table 3.1-1 shows the instruction set of vertex program that can be executed in

the PP state. In the programmer's view, the PP state instructions are the subset of

the TCC state instructions with graphics extensions such as source swizzling and

write-masks. That is, one input vector operand can be swizzled arbitrarily in the

SIMD datapath and all the output writes can be controlled by component-wise

write mask bits. Moreover, in the PP state, there are more options for input and

output operands such as VIR, VOR and display buffer memory, while the TCC

state allows only VGR for input and output operands.

Opcode Full Name Description Latency | Throughput
MUL Multiply Vector—Vector 4 1
MAD Multiply and Add Vector—Vector 4 1
DP3 3—term Dot Product Vector>Replicated 5 2

Scalar
DP4 4—term Dot Product Vector>Replicated 5 2
Scalar
TRFM Transform Vector—Vector 7 4
ADD Addition Vector—Vector 1 1
SUB Subtraction Vector—Vector 1 1
MOV Move Vector—Vector 1 1
RCP Reciprocal Scalar—Replicated 6 3
Scalar

RSQ Reciprocal Square Root Scalar—Replicated 8 5
Scalar

MIN Minimum Vector—Vector 1 1

MAX Maximum Vector—Vector 1 1
SLT Set Less Than Vector—Vector 1 1
SGE Set Greater Than or Equal Vector—Vector 1 1
SEQ Set Equal Vector—Vector 1 1
LSL Logical Shift Left Vector—Integer Vector 1 1
ASR Arithmetic Shift Right Vector—Integer Vector 1 1
ZERO Set Zero Vector 1 1
ARL Address Register Load |Vector—Integer Scalar 2 2
END Vertex Program End Miscellaneous 1 1

[Table 3.1-1: PP State Instructions for Vertex Program]

CHAPTER 3 Design of Graphics Processor 46

In the TCC state, the control flow instructions such as branch and return are

managed by the main processor and the vertex shader provides only the extended
SIMD arithmetic instructions. However all the vertex shader instructions can be
conditionally executed like conventional ARM instructions. When implementing
the fixed function pipeline of graphics library such as OpenGL which is
controlled by global states, the state checking, vertex shading path selection,
homogeneous clip space operations and back face culling are handled in the TCC
state. The remaining code segments for actual vertex shading operations can be
executed without state checking. These operations are carried out in the vertex
program of the PP state, which supports the vertex transform paths without
branching for simplicity and efficiency of hardware architecture. Even if the
control flow instructions are not supported in the PP state, simple if/then/else
statement is still possible through SLT, SGE and SEQ instructions.

To save the system resources, the datapath is made simple and efficient without
complex hardware blocks. All arithmetic operations including RCP and RSQ are
executed on the fixed-point numbers that can have any precisions, and only low
power integer arithmetic units are used. They are also fully pipelined, and there is
a bypass logic to forward the data to the different stage of pipeline of correct
instructions. And, I removed the complex functions such as the logarithmic,
exponential and specular power functions, and rather the table look-up is used for
these functions. The integer shift instructions of fixed-point numbers are added in
order to extract bit fields for index calculations in the lookup table. After shift
operations of vertex specific index, the ARL instruction can allow an offset into
the lookup table.

The following vertex program (Figure 3.1-3) implements the vertex
transformation and full Phong shading. It uses OpenGL lighting equations with

assumption of infinite light and viewpoint positions. To calculate the specular

CHAPTER 3 Design of Graphics Processor

47

Vertex Transformation and OpenGLLighting

#

c[0-3] = modelview matrix (column—wise)

#cld4—-7] = modelview inverse transpose (column—wise)
c[8—11] = modelview projection matrix (column—wise)

cl16] = light position

cl17] = blinn halfway vector

c[18] = precomputed specular light * specular mat.

c[19] = precomputed diffuse light * diffuse mat.

cl20] = precomputed ambientlight * ambient mat.

c[32—47] = 64 entries lookup table for specular power (column—wise)
cl48] = 16th, 32th, 48th and 64th entries of lookup table
c[49].x = fraction bit length of fixed—point format

c[49].y = fraction bit length — 2

c[49].z = fraction bit length — 6

c[49].w = fraction bit length + 4

c[50] = (0, 1, 2, 3) in integer format

Vertex transformation to eye space
TRFM VGRO.xyz, VIR[OPOS], c[0];

Normal vector transform to eye space
TRFM VGR1.xyz, VIRINRML], c[4];

Vertex transformation to clip space
TRFM VOR[HPOS], VIR[OPOS], c[8];

Compute normalized light direction
SUB VGRO.xyz, VGRO, c[16];

DP3 VGRO.w, VGRO, VGRO;

RSQ VGRO.w, VGRO.w;

MUL VGRO.xyz, VGRO, VGRO.w;

Compute N.L and N.H
DP3 VGR2, VGR1, VGRO;
DP3 VGR3, VGRI, ¢[17];
Index calculation of lookup table for specular power function
ASR VGR4, VGRS, c[49].y;
ASR VGRS, VGRS, c[49].z;
LSL VGRS, VGRS, c[49].z;
SUB VGRS6, VGRS, VGRE;
LSL VGRS5, VGRS, c[49].x;
LSL VGR?7, VGRA4, c[49].w;
SUB VGR5, VGR5, VGR7;

table look-up

ARL AO0.x, VGR5.x;

SEQ VGR7.x, VGR4, c[50].x;
SEQ VGR7.y, VGR4, c[50].y;
SEQ VGR7.z, VGR4, c[50].z;
SEQ VGR7.w, VGR4, c[50].w;
DP4 VGR4, VGR7, c[A0.x+32];
DP4 VGR5, VGR7, c[A0.x+33];

Compute specular power using interpolation
SUB VGR5, VGR5, VGR4
MAD VGR3, VGR5, VGR6, VGR4;

Compute light color values

MUL VGRS5.xyz, VGR3, c[18];

MUL VGRA4.xyz, VGR2, c[19];

ADD VGR5.xyz, VGR4, VGR5
ADD VOR[COLO].xyz, VGRS5, c[20];

texture coordinate
MOV VOR[TEXO0], VIR[TEXO
END

[Figure: 3.1-3: Vertex Program Code for Transformation and Lighting]

CHAPTER 3 Design of Graphics Processor 48

power function, 1 used the lookup table of 64 entries which store the specular
coefficients for given shininess value. After calculating dot product of normal
vector and the Blinn halfway vector, I used the integer shift instructions for offset
values. After the rearrangements of the instructions and the eliminations of false
dependencies, the vertex shader running at 200MHz can process these vertices at
a rate of 3.6M vertices/sec including view frustum clip check, perspective divide

and viewport transform.

3.1.3 SIMD Datapath Design

SIMD datapath of the vertex shader consists of SIMD ALU (arithmetic and logic
unit), SIMD multiply engine, SFU (special function unit) and SIMD reigster files.
Figure 3.1-4 shows the details of SIMD datapath with forwarding paths. Some of
operations such as TRFM, DP3, DP4, RSQ and RCP consumes multi-cycles for
completions, and decoder unit and finite state machine in the control part
generates all necessary signals. SIMD control register bank (SCR) contains
informations about processor states and arithmetic flags.

Figure 3.1-5(a) shows the SIMD ALU in the SIMD datapath. It can calculate all
fixed-point arithmetic and logic operations including byte shuffle, data packing
and operand alignment using only the integer adder and shifter. Although
fixed-point arithmetic can provide enough performance in mobile 3D graphics, I
designed efficient software floating-point emulations for more wider dynamic
range by adding two special instructions — controlled ADD/SUB (CAS) and
controlled logical shift (CLS). Control flow instructions such as if-then-clse are
frequently used in the programming of software floating-point arithmetic routines
on conventional integer RISC processors. However, these control flow instructions
decrease processing parallelism in SIMD datapath and require many operating

cycles. The CAS and CLS instructions change the control flow instructions to

49

CHAPTER 3 Design of Graphics Processor

Beigozpiy Beljezply

sngogdo
A

Jza —
isdam 220 | — | auljedidnds |1
as4gqm
49 3NV AUSYI —>bejqiseog
——> Jsygm ¥OS N
—{ ONam qu..“u 1 Adginwpung H
snginojhweg
snggmisel3 Baydijo
\4 | nisy3
— W
NN xwﬁmo -
odo
R
] 4
i<
gdo
1 w_NN_B&
MNVE
UOA snggdo
> wis sngam
v 1BpAqm +) puisia Sheing > pwiISM
»>] | hivpwistd
\w_] Jo1ys F— ubBiy S|
vdo ubly [pywp
—>
SSEEC sngyd h. sngqmisel3
i avdopusia Ll 0o
">
Sngn|ypwis]3
sSngqMpwiIsz3
SNgqMPWISE
snggqMpuwisy3
SNHGMPWISA |
owayy Aejdsiqg wouy, sngjgd?
(A Aeyd: d:
sngigpwis

Juederegpuist™ ¢auedelegpuwisy

SN PR

[Figure 3.1-4: Detail Block Diagram of SIMD Datapath]

CHAPTER 3 Design of Graphics Processor 50

single cycle SIMD arithmetic operations as shown in Figure 3.1-5(b). After
negative flag in arithmetic status register is updated by previous instructions such
as SUB, the CAS instruction can be made a single ADD instruction or SUB
instruction. The CLS instruction can also made be a single left shift instruction or
right shift instruction. These instructions can reduce the unnecessary comparison
operations in exponent alignment and normalization of floating-point arithmetic
With the floating-point emulation, the graphics processor shows 8OMFLOPS peak

floating-point performance at 200MHz operating frequency.

L} shCode

Status Reg. =
(N,ZC,V) aluCode {shType, N}
={aluType, N}

clk—>

OpA—s Shuffle || L
| Align
| Shifter » aluOut
2
opB . Pack r
opC shAmt
(a) Block Diagram
Previous Arithmetic
Instruction
Update ‘Negative (N) Flag Update]Negative (N) Flag
CAS CLS
Yjs l YES l
‘ ADD ‘ ‘ SUB ‘ ‘Rightshiﬂ‘ ‘ Left shift ‘
PR PR

\ 4 v

(b) Two Instructions (CAS,CLS) for Floating-point Emulation

[Figure 3.1-5: SIMD ALU]

51

CHAPTER 3 Design of Graphics Processor

Jyun Jaidiyny Julod-paxi4 ajbuig Jo ainjoa}iyoly asempaeH (9)
| | |

g

- abejs p3 T abejs g3 T abeyszg I abejs L3
" bz | nosuses N N
Vs <¢€>0702 (ebeys 3st)
/ 19ppy 19ppy e < £ Sondaun <ze>gdoinw
v l_| 'edoud [“| ones [LZgsoquns | [(ebBess puz) [T [._o.w_ W
ujAuied fueg L1 Aue soydpiny [«—| —| o0
! na-z¢ na-ze (€ <ze> yoog | || | oLxze
| 1emus <= | 1ePPV | | JoPPY o2 pEl obxze le |
indino ¥oed ‘edoug aAes <Te> <Zt>vdoinw
juiod-paxiy h._._mo | “m.:mo IHwns
fa-ee fa-ee <Zg>07wnooe < le—]
- 1aIys)
| le|
aje|nwndd
- <ZeSINOINWTS ‘. yoedun <ge>ole| A\
<ZE>IHWNooe \ le—|
/ i
- || / || \ ||

<ZTE>INOINWM

ssedAg |eusaju] (q)

sanjeA jiq z¢ ybiy sjerpauniajul
Jo ssedAq

ng-

m OVI J/ﬁ?mrm_fiai |

/

N
19693u1 319-p9 0}

|
Z€ UBIH jo ssedhg ju10d-paxy Hg-zg HOAUOD

(Y1) uonewoysuel] xuze (e)

SoNn|eA }q Z§ MO| djeIpawIdjul

jo ssedAq A oV X 1NN

Slw Lpw /W gw
yiw olw ow gw
clw W Gu Lw
clw gw puw ow

T N T

SJUBWA|d JOJO3A pPajsedpeo.q

ndybnoay;| Z OVIN
319k ¢

K ovin

X NN

Vva [\ea [za [a1 [a]

oLl

[Figure 3.1-6: SIMD Multiply]

CHAPTER 3 Design of Graphics Processor 52

Since multiplication-equivalent instructions spend most of time in graphics
operations, the throughput of fixed-point MAC operations is designed as a single
cycle. In addition, fast 4-cycle matrix transformation (TRFM) is implemented as
shown in Figure 3.1-6. By broadcasting vector elements of input vertex, TRFM
can be calculated by the first MUL and the following three MAC operations.
However, fixed-point MUL and MAC operations require two cycle integer
multiplications and two cycle integer additions, leading to 4-cycle latency. To
resolve data dependency between theses MUL and MAC operations, it is allowed
that intermediate value of the integer multipliers can be bypassed to accumulated
input of the integer adders in the SIMD multiply engine (Figure 3.1-6(c)). By this
scheme, the graphics processor shows S50Mvertices/s peak graphics performance
for parallel projection at 200MHz.

SFU (Figure 3.1-7) calculates the square root and division by using 32-bit
radix-4 combined integer division and square root unit. It calculates fixed-point
result from fixed-point input number. Integer shifter in SFU pre-scales the input

fixed-point number to intermediate 64-bit integer format before actual division and

For Qm.n Fixed-point Format

Normalized Input

Count
IN —> Leading
Zero Pre-scale
Value A 4
Radix-4
A 4 Integer Carry
1.0 Integer 2> DIV > ouTt
. —> - Propa. —>»
. SQRT >
in Qm.n Shifter > Q > Adder
A
// Quotient
/ -
/ Remainder
/
e Scale up fixed-point dividend to 64b space
OP Pre-scale Value
RCP # of Leading Zero
RSQ n/2 + # of Leading Zero

[Figure 3.1-7: SFU]

CHAPTER 3 Design of Graphics Processor 53

square root operations. Since output fixed-point number is 32-bit value, only MSB
32-bit of the intermediate 64-bit integer value is calculated after

counting-leading-zero (CLZ) operation.

3.1.4 Operation Model

Display General Integer and
General «—>| Buffer Fixed-point Instruction,
CP SIMD . .
Appl. > || ARM |[«—>| VE [> Datapath SW Floating-point
(Game All...) P emulation
VGR (TCC state)
Code
| VIR | | Memory
¢ Display
Vertex SIMD «—| Buffer Fixed-point
Shading j Datapath Graphics Instruction
(TnL...) P (PP state)
VGR
VOR
| VORO || VOR1 || VOR2 |
L4 \ 2
General Instruction
Clipping | == || ARM [«—> CPles| SIMD I, ver & TCLIP
IIF Datapath (TCC state)
Vertex FIFO
%

To Rendering Engine

[Figure 3.1-8: Operation Model]

Figure 3.1-8 illustrates operation model of the vertex shader in geometry
pipeline. General SIMD integer and fixed-point instructions of the TCC state can
be used to program general applications such as artificial intelligence (Al) part of
graphics game engine. The graphics parameters such as model-view matrix,
camera movement and lighting information can be generated at this step. The
efficient floating-point emulation enables calculations requiring more wide
dynamic range while consuming less silicon area. Since the display buffer can be

readable and writable in the TCC state, the vertex shader can move the vertex

CHAPTER 3 Design of Graphics Processor 54

model data in the display buffer to VIR for vertex shading while writing graphics
parameters. After that, vertex shading operations exampled in the figure 3.1-3 can
be performed by using vertex program instructions of the PP state. Vertex
program call instruction in the TCC state changes the processor state and make
the vertex shader issue graphics instructions stored in the code memory. After
finishing the vertex program, the processor state of vertex shader is automatically
changed back to the TCC state. At this time, the vertex shader performs primitive
assembly such as polygon clipping. The TCC state contains a special instruction
— TCLIP for accelerating polygon clipping by testing whether a given vertex is
inside the view frustum in clip coordinates (see the figure 1.2-1). A point inside

the frustum in clip coordinates satisfies the following conditions [38].

—w, < x, <+ w, +w, <z, <—w,
—w, <y, <+w, forw,>0 +w, <y <—w, forw, <0
0 <2 <+ w, +w, <2z <0

The TCLIP instruction, which is mapped in ARMI10's coprocessor register
transfer instruction, generates a clip code into one of ARMI10's registers from a
input vertex stored in one of the general SIMD registers as shown in Figure
3.1-9(a). If the clip code is zero, the given vertex is inside the view frustum.
Although the TCLIP instruction deals with the case of positive w only, ARM's
conditional execution mechanism allows the clip code to be calculated in the case
of negative w as well (Figure 3.1-9(b)). In the operation model, the transformed
and lit vertex output is stored in one of there VORs after vertex shading. In the
clip stage, the vertex shader first inspects the clip code of this vertex output, and
then transfers it to the rendering engine through the vertex FIFO by using
conditional execution mechanism only if the vertex is inside. Otherwise,
interpolation of vertex across clip boundary of view frustum indicated by the clip

code is performed before transferring the vertex output to the rendering engine.

CHAPTER 3 Design of Graphics Processor

55

‘ View
Frustum

TCLIP:
Inside or not?

SIMD
Register

SN |<|X

[Figure 3.1-9(a)

\

ARM

Register

x>2-w?0:1 = | 5thBit

— 7 x<+w?20:1 = | 4thBit

— y=-w?0:1 =) | 3thBit

y<4+w?0:1 => | 2thBit

z20?0:1 = | 1thBit

z<+w?0:1 = | othBit

: TCLIP Instruction]

RO: clip code
VZERO VGRO;

TEXTC.w R15;

TCLIPLE RO, VGRI;
TCLIPGT RO, VGRZ;

VSUB VGR2, VGRO, VGR1;

// VGRO
// VGR2

// in the case of positive w
// in the case of negative w

VGR1: transformed and lit vertex output (x,y,z,w)

0,0,0,0)

(
(

#ARM's CPSR = w part of SIMD CPSR

—X,~Y,~2,~W)

[Figure 3.1-9(b): Clip Code Calculation]

3.2 Rendering Engine

3.2.1 Internal Architecture

Set-up |

Vertex FIFO

Operqtions

J L Xformed and Lit Polygon

S~

(TSE)

™% Triangle Setup Engine

Interpol.

z

Depth
Compare

~

‘J LPier Processor (PXP)

| J) 8KB Depth

Z

<z

Texture
Engine

&

Blending

‘ M_req

er

Align

evern

Cache

=

3KB Texture

odd|

Cache 0

=

3KB Texture

Cache 1

N 12KB Frame

Y Cache

(=

MEM
IIF

System
Bus

[Figure 3.2-1: Internal Architecture of Rendering Engine]

CHAPTER 3 Design of Graphics Processor 56

Figure 3.2-1 shows internal architecture of the rendering engine. It consists of a
triangle setup engine (TSE), a pixel processor (PXP) and a graphics cache system.
The TSE accelerates setup operations by sorting positions of the input triangles,
and balances the 3D graphics pipeline between the rendering engine and the
vertex shader. The PXP performs the main rendering operations such as shading,
depth comparison, texture mapping and pixel blending.

The 26kB graphics cache contains frame, depth and texture caches, and stores
frequently accessed pixel data. The frame and depth caches are direct-mapped
caches in screen coordinates with two-dimensional array as illustrated in Figure
3.2-2, and show 97.9% and 98.8% average cache hit ratio for frame and depth
buffer operations, respectively. In order to prevent conflicts in bilinear MIPMAP
filtering, the texture cache are composed of two separate direct-mapped caches

having the same screen-mapped coordinates with the frame and depth caches.

2D Direct Mapped

//—\‘ x4 Block

4
16
Blocks Cache
512x512
Screen
S 16
Blocks
< Cache Mapping >
8 | | 6|5 210
xtag (3) Block address (4) | Offset (2) | < X address >
8 | 6 | 5 | t2111]o0
‘ ‘ ‘ ‘ | <Y address >
ytag (3) Block address (4) | Offset (2)

[Figure 3.2-2: 2D-screen Mapping in Graphics Cache]

CHAPTER 3 Design of Graphics Processor 57

Since the texture cache has separate memory for even and odd mip-level, it works
effectively like as 2-way set-associative cache, achieving up to 96.5% hit ratio
and average 20% power reduction compared to single direct-mapped cache.

The data access pattern of frame and depth caches are strongly related with
rasterization order of the rendering engine in 2D screen, and the cache capacity in
this work 1is relatively higher than in PC graphics system. Therefore, the hit ratio
of direct mapped frame and depth caches is similar to associate caches. However,
the well-known cache power model, CACTI [39], tells that the power
consumption of two-associate cache is 50% higher than one of direct mapped
cache in cache hit state. Therefore, the direct mapped cache can be more
beneficial in design of depth and frame caches. But, in the case of texture cache
design, the two-associate caches or separate direct-mapped caches show two-times
smaller miss ratio than conventional direct mapped cache in bilinear MIPMAP

texture filtering [40].

3.2.2 Instruction Set and Vertex FIFO

The rendering engine has its own instruction set to control the datapath and
execute rendering program. Table 3.2-1 briefs the rendering engine instructions.
Since the cycle consumed in transferring vertex data from geometry stage can be
performance bottleneck in full graphics pipeline, the rendering engine is optimized
to process all necessary information of vertex at every rendering cycle by RDAT
instruction. It contains screen coordinates (X, Y), 16-bit screen depth (Z), color (R,
G, B, A), and homogeneous texture coordinates (1, v, 1/w). Each color component
is represented by 8-bit integer to support true-color rendering with alpha-blending.
And each screen coordinate (X, Y) contains 9-bit integer to cover 512x512 screen
resolution. The homogeneous texture coordinate is represented as 16-bit

fixed-point format (8-bit integer + 8-bit fraction) to preserve necessary dynamic

CHAPTER 3 Design of Graphics Processor

58

Type

Mnemonic

Description

Rendering

RDAT TRI POS W U V
XYZARGB

Fetch vertex data

TRI: Strip support

00: Intermediate vertex
01: End vertex

POS: Reduce bandwidth
0100: 1st vertex

0010: 2nd vertex

0001: 3rd vertex
W[16b]=1/W
DATAO[16b,16b]=u:v
DATA1[9b:9b:6b,8b]=X:Y:A:R
DATA2[8b:8b:16b]=G:B:Z
(A is valid only if TRI=01)

Texture

TMOD ADDR BLND FILT
ID SIZE

Set texture mapping mode

BLND[4b]: Blending mode
0001: Decal

0010: Modulate
FILT[4b]: Filtering method
0001: Point sampling
0010: Bilinear filtering
ID[8b]: Texture ID
LODI[4b]: LOD Bias

Oxxx: Normal mode
1AAA: Set LOD to A
SIZE[12b]: Texture Size

Cache

CIVLD CACHE

Set cache tag information invalid

Target[4b]: Target cache
0001: Depth cache
0010: Frame cache
0100: Texture cache

CFLUSH CACHE

Flush cache contents to main memory

Target[4b]: Target cache
0001: Depth cache
0010: Frame cache
0100: Texture cache

MBASE CACHE ADDR

Set base address for graphics memory

Target[4b]: Target cache
0001: Depth cache

0010: Frame cache
0100: Texture cache
ADDR[32b]: Base address

Table 3.2-1: Rendering Engine Instructions

CHAPTER 3 Design of Graphics Processor 59

range and precision for texture calculation. The rendering engine also contains
instructions for graphics cache management. Since depth buffer, frame buffer and
texture memory are located in memory space of the ARMIO0 host processor,
additional memory management are not required for the rendering engine. Instead,
MBASE instruction is designed for setting base address of each graphics memory
in internal register of the rendering engine, allowing address translations to be
performed inside the rendering engine. And, instructions making caches invalid
and flushing frame cache contents to frame buffer are added for initialization and
finalization of rendering operations, respectively.

The vertex FIFO is implemented in the vertex shader to buffering vertex data
between the vertex shader and the rendering engine as shown in Figure 3.2-3.
Since the calculated vertex data is stored in VOR of the vertex shader, the
ARMI10 processor encodes this vertex data to the rendering engine instruction
such as RDAT in collaboration with the vertex shader of the TCC state. Then, the
ARMI10 processor pushes it to the vertex FIFO by using queue insertion
instruction mapped to coprocessor data processing instruction of the TCC state,
which allows the ARMI10 processor to continue executions of next instructions
even in the case of queue full state. After that, the rendering engine can pop its

instructions from the vertex FIFO through its fetch logic. If there is no more

Vertex Shader
Vertex FIFO
[VOR m—m Entry 0 |
- [er| SIMD Entry 1 Rendering
IIF atapa ! ey Engine
1 Entry7 % Fetch
"‘\‘ Push: Mapped \‘ Pop: Fetch

Encode ca_lculated_ vertex to in TCC state in RE
RE instruction

[Figure 3.2-3: Vertex FIFO]

CHAPTER 3 Design of Graphics Processor 60

instruction in the vertex FIFO, the rendering engine waits for new instruction and

stops its operations.

3.3 Low Power Techniques

The implemented graphics processor controls its dynamic power consumption at
both of micro-level and macro-level.

3.3.1 Instruction-level Power Management

For micro-level power management of the vertex shader, it implements
instruction-level power management as shown in Figure 3.3-1. By the definition
of the ARMI0 coprocessor interface, the ARMI10 processor must drive
coprocessor instruction valid (CPINSTV) signal to the vertex shader only when
the current instruction issued from the ARMI10 processor is the valid vertex
shader instruction. Using CPINSTV, the clock signals of the SIMD register files
can be gated off when the write operations of the register files are not required.
The read operations of the register files are still possible in the clock-off state.
The write operations of the register files are performed in the writeback stage,
and CPINSTYV is valid in boundary between the issue and the decode stage of the
vertex shader pipeline. Nevertheless, the vertex shader can operate reliably
because pipeline registers hold register writeback values before writeback
operations, and the register forwarding logic bypasses these valuesto correct input
ports of arithmetic units. CPINSTV also reduces the power dissipated in the
datapath of SIMD arithmetic units by eliminating the unnecessary signal
transitions. Therefore, the coprocessor architecture shows fine-grained power
management on an instruction-by-instruction basis. In the vertex shader, since the
SIMD register files and datapath consume about 80% of power, about 47%
activation ratio in calculating full 3D geometry operations achieves up to 43%

power reduction.

CHAPTER 3 Design of Graphics Processor 61

Pipeline of main processor
—>{1clk ‘4—

E

Instruction: An ‘ F | D M| W

Instruction: Vn+1 F | D E | M

Instruction: An+2)F 1 D E M| W
Instruction: Vn+3 ! D E| M W

~>—> Driven in early stage

Instruction Valid of pipeline

Signal

Pipeline of vertex shader

Instruction: Vn+1 ‘ Iéi ‘ | D Ei E2 | E3 | E4 | W
Instruction: Vn+3 \\‘c F 1 D | E1 | E2 | E3 | E4 ‘ w ‘
lock is not supplied to SIMD arithmetic
units in datapath
F: Fetch I: Issue D: Decode
E: Execute M: Memory W: Writeback

An: ARM instructions
Vn: Vertex shader instructions

(a) Clock-gating in Pipeline Stages

PFS Vertex Shader 0 j_t/ AN
— PP
VIR
TCC ﬁbr\
L
Clock VGR
Source ED Main Clock {>D
VOR 0
Enable **‘D—r\
1) T — | VOR 1
o i
CPINSTV | [el
ARM-10 | »a & 0 @ —
S || BT VOR 2
/ —
P // g VPCTRL Clock-gating of register files
Active high @ (5 7
the co-processor <
is called E Latch Qi%
D Fixed-
"] .
Latch Q—% point
1| E Datapath
bt
Latch Q— 2
E o
Operand isolations .

(b) Hardware Implementation

[Figure: 3.3-1: Instruction-wise Power Management]

CHAPTER 3 Design of Graphics Processor 62

3.3.2 Pixel-level Clock-gating

For micro-level power management of the rendering engine, it implements
pixel-level clock gating. To reduce power consumption, the PXP in the rendering
engine allows clock gating, which uses depth-compare results generated in early
stage of rendering pipeline as shown in Figure 3.3-2. If a new pixel to be drawn
is already covered by the pixels near from the viewpoint, the PXP does not need
to process further. To use this property, the depth-compare unit is put into the
earlier pipeline stage and the clock signals of the texture and blending units are
gated-off to prevent unnecessary shading and texturing. It also reduces the power
consumption of the graphics cache system by eliminating the unnecessary requests
to each cache. For typical graphics applications that have the depth complexity of
two, the pixel-level clock gating of the rendering engine shows average 25%

power reduction [29].

»<

Unnecessary z
Operations
¥
#1> #2
#1 #2
> X
New
] Depth -
Depth >
—» > Interpolation Compare
Unit
Old Write
Depth Masky v

Depth Cache

Color / Coord. Next
—» > Interpolation —>Pipeline
Unit Stage
T iy
P . Gating
REclk - " Control

[Figure 3.3-2: Pixel-level Clock-gating]

CHAPTER 3 Design of Graphics Processor 63

3.3.3 Programmable Frequency Synthesizer

For macro-level power management, the graphics processor contains the
programmable frequency synthesizer (PFS) as shown in Figure 3.3-3. Revised
from the previous implementation that supported the only abrupt frequency change
(2x, 1x, 0.5x) [13], this PFS can continuously and adaptively tune the target
frequency with PLL-type frequency synthesizer. Once the operation mode is
selected by OP_MODE (FAST / NORMAL / SLOW), FREQ CTRL sets the
target frequency adaptively. The frequency in FAST mode can vary from 32MHz
to 271MHz with 1MHz step, NORMAL from 16MHz to 135.5MHz with 500KHz
step, and SLOW from 8MHz to 67.75MHz with 250KHz step. The PFS is
designed to cover wide frequency scaling range from 8MHz to 271MHz.

Since the 3D graphics applications are executed at a given frame rate, or FPS
(Frame Per Second), finite amount of pixels should be drawn within the time slot
of a single frame. Once the vertex shader and the rendering engine finish drawing
pixels, their datapath do not need clocking for the rest of the time till restarting
next frame. Therefore, the host software running on the ARMI10 processor
measures the average workload of the current frame, and sets the target frequency
of PFS adaptively for the next frame. The power-management software counts the
clock ticks from external counter when pixels of the given frame are completely
drawn. Then, it compares the measured number of clock ticks with pre-determined
value that is defined as the frequency of external counter's oscillator divided by
required frame rate. If the drawing pixels are completed earlier than the preset
threshold, then the software adjusts the chips's frequency for next frame to be
slower, and resets the external counter before starting the next frame. For the
case that the next frame requires more processing than the present, the software
maintains 25% margin in workload monitoring to avoid unwanted slowing-down.

To cover wide frequency scaling range with high tolerance against process

CHAPTER 3 Design of Graphics Processor

64

Clock Ticks during a
Given Frame

\A Oscillrator
1x External [——
fTarget PFS > ARM10 T | Counter —

1X£ 0.25x y 0.5x lf‘ T > 0 , increase fTarget

FPS
RE
VS RE
Cache) fo
if T < , decrease fi ...
(a) PFS System
vco
CK

REF CLK m pep 1 cp sl Lpe ||| UP/

(1MHz) ke 1 DOWN
“or_moDE

[FAST/ ¢

NORMAL/

SLOW] PROGRAM | PRE

COUNTER SCALAR
P 4 x
A
F(?TERC:_- RESET SWALLOW
COUNTER
s 4 x L >RISCclk
FREQ 1x >»VSclk
DIV 1/4x [»REcIk

| Enable 1/2x |- »REMEMclk

Software Fgg:nzlizgk

(b) PFS Block Diagram

Fully Balanced V-l Converter

1
:I - JD cco
T |
I ®
VCO— J I VC DN
- I - O
:? J=' T T T = ;

(c) Fully Balanced VCO

[Figure 3.3-3: Programmable Frequency Synthesizer]

CHAPTER 3 Design of Graphics Processor 65

3.3V

127MHz
112MHz
< > 93MHz
70MHz

A
Y.

[Figure 3.3-4: Measured Waveform (RISCclk in NORMAL Mode]

variations, the PFS implements the fully balanced voltage-controlled oscillator
(VCO) as shown in Figure 3.3-3(c). The proposed VCO consists of a fully
balanced V-I converter and a current-controlled oscillator (CCO) with five delay
stages. Each stage is designed as fully balanced differential configuration. The V-I
converter converts the control voltage of VCO into complementary UP and DN
control bias voltages that drive two separated bias current sources. The CCO
minimizes the effects of power supply noise and substrate noise. The tuning range
of the VCO is 350MHz and ensures wide linearity range and nearly constant gain
over the rail-to-rail control voltage variation.

Adaptive variation of the clock frequency [41] is advantageous over the
conventional clock gating, which pumps the clock tree at the maximum frequency
and pause the clocks to the datapaths by gating off them abruptly after drawing
the frame. Even if the datapaths are prevented from transitions, the spine of clock
tree is kept pumped thus wastes power in the conventional clock gating.

Although the frequency of the clock output (CKout) is continuously changed
until being locked to the desired value, the chip can be reliably operated since all
logics are designed with fully static circuits and the chip communicates with

off-chip devices asynchronously. The PLL locking time is less than 50us and it

CHAPTER 3 Design of Graphics Processor 66

consumes 2mW. Figure 3.3-4 shows the acquisition waveform of the PFS during
frequency change in NORMAL mode. As shown in this measurement results, the
PFS can provide the clock to each hardware block continuously without unwanted

transitions.

CHAPTER 4 Chip Implementation 67

CHAPTER 4

Chip Implementation

4.1 Implementation Results

The proposed graphics processor is fabricated in 0.18um 6-metal standard CMOS
logic process. The chip size is 36 mm’ including 2M logic transistors and 96kB
SRAM. Figure 4.1-1 shows the die photograph and Table 4.1-1 summarizes its
features. By using this chip, various 3D graphics algorithms and other multimedia

IUIEFIIIHH\ [l[ll U(IIIII“IHJ[I"I}!IIUII[P HlUll'LliIIiI!Bl]lH!l!UlJII(lI]!I'J‘]UIéII’IIFI] LR

g
“"”"'s i HIE ';‘41 g [S mm

.‘ L TN

[Figure 4.1-1: Die Photograph]

CHAPTER 4 Chip Implementation

68

Process Technology

0.18 um 6-Metal CMOS

Power Supply

1.8V(core), 3.3V(l/0)

Transistor Counts

2M Logic
96kB SRAM

Die Size

4.8mm by 4.8mm (core)

6.0mm by 6.0mm (chip)

Fast : ~200MHz/50MHz
Normal : ~100MHz/25MHz
Slow : ~50MHz/12.5MHz

Operating Frequency
(ARM, VS / RE)

Power Consumption <155mW
Package 256 pin PBGA
General 1000MIPS (ARM and vertex shader)
80MFLOPS(software emulation)
Geometr 50Mvertices/s
y (Geometry transformation)
Performance Renderin 50Mpixels/s, 200Mtexels/s
g (Bilinear MIPMAP filtered pixel)
3.6Mpolygons/s (sustaining)
Full 3D Pipeline | (Including full OpenGL lighting, clip check
and texturing)
Programmability | Vertex program version 1.1 compatible
Screen Resolution | up to 512 x 512 pixels
Graphics Triangle Setup Hardware-accelerated triangle setup engine
Functions Shading Gouraud / Flat
Texture Mapping | Point/Bilinear MIPMAP filtering
Antialiasing x2, x4

[Table 4.1-1: Chip Characteristics]

functions can be processed with 50Mvertices/s peak graphics performance, and
24-bit true colored and texture-mapped graphics images can be drawn at the speed
of 50Mpixels/s and 200Mtexels/s

The coprocessor architecture of the proposed graphics processor can be easily
adopted inside of ARM platform-based mobile SoC (Figure 4.1-2(a)). Or, its
standard bi-directional asynchronous SRAM off-chip interface allows it to operate
with any existing microprocessor or mobile system chipset. Figure 4.1-2(b) is the
integration with existing application processor and baseband processor by utilizing
dual-port asynchronous SRAM for shared memory between the graphics processor

and host system.

CHAPTER 4 Chip Implementation 69

Baseband Baseband
Processor Processor
ARM [CP!| vertex | | Rendering oo o| ARM
Core Shader |~ '| Engine Core
General I AMBA BUS I General | AMBA BUS
Purpose < > Purpose ¢
I I I
MEM TX/IRX MEM DUE] Z| Graphics
] oo 0
Others CTRL DFM, SBI cTRL [P Port [« pocessor
SRAM s
A v
ROM/ IF, ROM/
PERI. RAM LNA RAM
(a) SoC Type (b) Multi-processor Type

[Figure 4.1-2: Integration of Graphics Processor into Mobile System Chipset]

Figure 4.1-3 visualizes the system power consumption and overall full 3D
graphics performance for various configurations of the graphics processors. The
fixed-point graphics processing and the micro-level (instruction-level and
pixel-level) power management reduce the power consumption by 26% compared
to the previous implementation [13]. Moreover, parallel operations of the ARM10
processor and the vertex shader by dual operations increase the sustaining
graphics performance about 50 times. The additional power dissipated by dual
operations is as low as 3mW, because only simple instruction-fetch units are
required and remaining hardware blocks are shared by the two operating states.
The implemented graphics processor consumes 155mW in continuous calculation
of 3.6Mpolygons/s full 3D graphics pipeline including geometry transformation,
lighting, clip check, shading and bilinear MIPMAP texture mapping at FAST
mode (200MHz RISCclk, VSclk, and 50MHz REclk). For unlighted and
non-textured graphics applications, the power consumption is about 132mW and
the performance is increased up to 10Mpolygons/s for sustaining input of vertex

data. Figure 4.1-4 shows the area and power breakdown of the graphics processor.

CHAPTER 4 Chip Implementation

70

Power consumption (mW)

10M
A: No vertex shader
Sustaining Full 3-D graphics Performance (w/ lighting and texturing)
(Polygons/sec) B: Conventional integer SIMD
3.6M processor
2.77M - (w/ lighting and texturing)
1.56M 50 times C: Floating-point graphics
- Improvement processor
(w/ lighting and texturing)
D: This work
(w/ lighting and texturing)

0.07M

210

200+ E: This work

26% (w/o lighting and texturing)
Reduction

180

167 170 1

160 - 155

1404 132
[Vertex shader

1204 [] RE with graphics mem.

100 [ZZZZ]1 RISC with I/D caches
[] Power management

80

I Others (BUS, I0)
60
40
20
o I — —— — =
A[13] B c D E
This Work

[Figure 4.1-3: Performance and Power Consumption of Graphics Processor]

VS SFU

(4 3%)

VS SIMD RE Core (27%)

Multiply (23%)

RE Frame$ Ctrl (2.2%)

VS SIMD

RE Depth$ Ctrl (2.1%)
ALU (5%)

RE Texture$ Ctrl (1.6%)
RE Mem IIF (0.41%)

ARMI0 Control (3.3%)
VS SIMD
Registers (16%) ARM10 Datapath (7.8%)
ARM10 1§ Ctrl (1%)
ARM10 D$ Ctrl (1.2%)

VPCTRL (0.3%)

VS Control (2.8%)

Vertex FIFO (2.1%)

[Figure 4.1-4 (a): Gate Counts Breakdown of Graphics Processor]

CHAPTER 4 Chip Implementation 71

VS Others
(26%)

VS SFU
(2.2%)

V'S SIMD
Multiply (11%)

VS Memory(5.4%)

RE Core (13%)

VS SIMD
Registers (7.7%)
RE Frame $ (0.71%)
RE Depth$ (1.6%)

RE Texture$ (0.67%)

ARM10 D$ (4.2%)

ARM10 I$ (7.6%)
ARM10 Core (21%)

[Figure 4.1-4 (b): Power Consumption Breakdown of Graphics

Processor during Operations of Full 3D Pipeline]

4.2 Evaluation Platform

System evaluation platform, called by REMY platform (Figure 4.2-1), was
developed to evaluate and demonstrate mobile 3D graphics using a flexible
topology and protocol. The REMY platform incorporates Intel's PXA255 host
processor with embedded Linux operating system since the prototype chip doesn't
implement subsidiary hardware blocks such as memory management unit and an
LCD controller. The host system is used for displaying and accessing the target
system while varying the configuration parameters such as external memory
capacity and bus protocols. The hardware layer of the REMY platform contains
the target system equipped with the fabricated chip and an FPGA system
controller. The FPGA chip is responsible for emulating operations of dual-port
SRAM and debugging the whole system.

The mobile graphics library, MobileGL, was implemented in the software layer
of the REMY platform to simplify development of applications. MobileGL is an

OpenGL-ES compatible graphics library optimized with hand-written assembly

CHAPTER 4 Chip Implementation

72

Graphics
Image

Fabricated
Chip

iEEE

LS e LI]

(a) Demonstation Board (Full 3-D Operation with Lighting and
Transformation)

Developing Running on Target Running on Host
\ [L] |
. [Display
3D Graphics App. | Program _
Y |
MobileGL |
Profiler
Vertex |
> Shader \‘I;:t:x | .
Invoke Y Windows &
¥ | GUI "
MGL Primitive | S
X
States [Assembly | §
: ¥ Math || | ry 3
Rendering Lib. | v
Cycle- «©» Engine |
accurate Invoke | | Dev. 0os
Emulator v | Driver | (Linux)
hig Native Platform Interface | x y
I | -
A4 [Y y -
Graphics | é
Processor P | J a PXA255
Chlp ~ g '(:: Host QI,
(DigiAcc-1) | | & | System 3
o
Real-time : ¢ §
H o
Tracing 1| uss On-board | =
on Interface Memory [.
Display
| _

(b) REMY Block Diagram

[Figure 4.2-1: System Evaluation Platform]

CHAPTER 4 Chip Implementation 73

language to improve performance of an ARM-based mobile 3D graphics system.
MobileGL consists of a fixed-point math library, vertex shader invocation
routines, rendering engine invocation routines, primitive assembly, and state
variables with vertex array capability. The native platform interface (NPI) provides
intrinsic functions of hardware-dependent programmer's model in assembly and a
high-level language for the core of the MobileGL. MobileGL can be ported to
various hardware configurations without major architecture modifications by using
NPI. The cycle-accurate software emulator of target hardware and the performance
profiler were implemented in the REMY platform for performance evaluations and
future derivative development.

As shown in the figure, the fabricated chip was successfully demonstrated on the

REMY platform while showing images of real-time 3D graphics.

4.3 Performance Comparison

The graphics performance in the mobile terminals cannot be compared directly in
terms of processing speed such as vertex calculation rate because the power
consumption must be taken into account as well. Although PC graphics hardware
provides many advanced features with high calculation rate, the power
consumption is too much to apply it to mobile platform. For the comparison of
the implemented graphics processor with other previous architectures, the

following performance index is used instead of only processing speed.

Vertex Processing Rate(Vertices/s) VXPS/mW
Power Consumption B

Performance Index =

It is analogous to MIPS/mW in embedded RISC processor. Based on the
graphics index, the proposed graphics processor shows 161.2kVXPS/mW as

shown in Figure 4.3-1, which is significantly higher than other implementations.

CHAPTER 4 Chip Implementation 74

170 4
160 .

- 12% 1 161.2
150 4 Improvement

140 144.0
130 |

120]
110 .
100]
90]
80]
70]
60
50]
40]
30
20]
10 5.0

42.9

Performance Index (Kvertices/s per mW)

ISSCC 2003 ISSCC 2004 ISSCC 2004 This Work
[13] [42] [21]

[Figure 4.3-1: Performance Comparison]

Energy consumption is proportional to the number of memory access, so many
researchers focus on reducing off-chip bandwidth to enhance the battery lifetime
for mobile 3D applications. PowerVR's MBX architecture reduces the memory
accesses with tile-based rendering, but the performance is limited by the system
bus and the tiling overhead. Mitsubishi's Z3D core, intended for mobile phones,
utilizes clock gating to achieve the lowest power consumption in spite of a
floating-point geometry engine and 1Mbits embedded SRAM. However, its
performance and functionality are constrained by the low operating frequency
required by its limited power budget. The Playstation Portable (PSP), developed
by SONY, contains all necessary hardware blocks required for various applications
in a handheld video game system, including a MIPS processor with vector FPU,
media processing unit, rendering engine and surface engine. The PSP features
2Mb of embedded DRAM to boost internal memory bandwidth and support

Read-Modify-Write operations for 3D graphics. The rendering engine and surface

CHAPTER 4 Chip Implementation 75

engine can execute more advanced graphics algorithm such as tessellation,
skinning and morphing. The PSP also enables H.264 decoding for mobile video
applications. However, the relatively high power consumption of the PSP limits its
application in mobile terminals such as cell-phones. nVidia's SC10 provides
complete hardware acceleration for mobile multimedia. It supports 2D/3D graphics
and MPEG4 video with camera functions. The SCI0 distinguishes itself from
other architectures by implementing pixel-level programmability such as blending
and combining operations for more realistic graphics images on handheld displays.
However, the SC10 lacks a geometry engine for balanced performance. Table
4.3-1 summarizes the performance comparison and supported features of various
graphics architectures.

The design consideration in the proposed graphics processor is to show the high
energy-efficiency that is achievable by scaling and optimizing a processor's
graphics functionality. The main design focus is on a simple programmable
architecture optimized for mobile platforms, such as ARM processors, while

achieving high performance with low power consumption.

76

CHAPTER 4 Chip Implementation

(soydesb od)

MW/SdXAM 9< aaa 1]1] 2 S/S921J9AIN009 MO001> sng 4OV VIN Buipeus jaxid Buuiapuay 0089 9210499
¢ ; 9 XaMaA Yoy + Aijowoan S2IPIAU
Buunyxa] ‘Buipeys
. s/s|oxidiNOS ZHINOOZD 10ssao0adon amis 19ba3u) : ; Buliapuay
MUWISAXAA oL | ez S/SOOIBAINOS | MWSS] OLINYY asoding |eseuan mc_wmﬁw%oi + Anowoag oML
auibu3z az nay9
MW/SdXAX €°€L 0L~ S/SIoxidiNz, ZHWNZ.D sng diyo-4o 99p0) O3dr MH mcm._suxﬁ_::s_ Auo Buuspuay | 019§ S.eIPIAU
¢ S/S92IMBAIN | MwSGL 20p09 YOIJIN WH Buipeys

VIN s/s1axidiN00L ZHINOO LD VIN 99p0) O3dr 6o xapaA 0ogzuoabew)

VN S/S9211IBANL VIN 19pod2Q y93dIN ‘Burinyxa SV

siexidNy99 | ZHW99LD 9900 OPNY EANIOYY | 0 LIXIBINI Bunapuay
MW/SdXAM 0L oS> w\mmo_.tgs_mm MWOO0S suoje puejs d_ooom.n_ $9Z'H M/H Mm:_u:w_m_ X3UdA + b.umEomw dSd S.ANOS
aulbug aoeung
Buipeys

. s/s|axIdNL’G ZHWOED _ J9jsuel] yoo|g ig auB agz

MW/SAXAM 6'v 2'oe S/S0OIIOAYSE] MWSE sng diyo-yo ‘114 s1Bueosy .w__m___::s_ S IUSIGNSHIN
uunyxaj
Buiddey dwng (uondo) S-dH
s/sjoxid Z| Iy iy
MW/SAXAN 0°Z) | ol eanoey | THW0ZID vany VIN Buumxeyyny | Answosg Xan
; ‘Bunybiq + Bunepuay s, ¥AJamod
Xxapuj (wngL 0®@) uondwnsuo) aoeIAU| uoljeIad|addy

soiydein avd omeary | OoUEUHOHed 1amod uoneibaju) 8injesd ac ainead ag oIEMPIEH ainjoajyauy

[Table 4.3-1: Summary of Various Graphics Architectures]

CHAPTER 5 Enhancing Stream Processing a4

CHAPTER 5

Enhancing Stream Processing

5.1 Data Stream Architecture

5.1.1 Concepts of Stream Processing

Improving technology of VLSI system makes performance of arithmetic units
sufficiently high while bandwidth is still insufficient. Many architectures use cache
system [43] or embedded memory [11-13][17] system for compensating bandwidth
requirements. However, cache architecture cannot provide enough benefits in
multimedia signal processing, in that, generally, primitives are processed once and
then discarded. And, embedded memory architectures show low scalability and
high physical design complexity, causing adaptation of screen and primitive size
changes difficult. In a few years, stream processing is being implemented to
exploit locality in signal processing [44-47]. In stream processing, data are
organized as streams and all computations as kernels. A stream is defined as
single type's collection of data records requiring same computation, and a kernel
is defined as a function applied to each element in a stream. A stream processor
executes a kernel over all elements of an input stream and places results into an
output stream as illustrated in Figure 5.1-1. Therefore, it exploits data parallelism
to make computing element busy as well as data locality to increase arithmetic
intensity (the ratio of arithmetic to bandwidth) [45].

Producer-consumer locality occurs when one component of a system is producing

CHAPTER 5 Enhancing Stream Processing 78

</ X, First In

|

\ ‘ First Out

[Figure 5.1-1: Stream Processing]

something that is immediately consumed by another component of the system.
This locality features multimedia signal processing itself, expecially 3D graphics.
In the graphics pipeline, each stage generates output results that are immediately
used by next stage as shown in Figure 5.1-2 [48]. The heterogeneous streams that
require non-identical operations on each element by specified conditions such as

culling can be splitted to separate homogeneous streams by conditions.

Input Geometry Rasterization Composite
Data vd
Transform /
Spanprep
GLShader
Primitive
Assembl
Z Lookup
Cull
Texture Z compare
Lookup / P
Project N Color, Z
Write
I

N E

[Figure 5.1-2: Stream Representation of Graphics Pipeline]

CHAPTER 5 Enhancing Stream Processing 79

Figure 5.1-3 shows the Imagine Stream Processor developed by Stanford
University [44]. In view of hardware implementation, stream processor requires
two features — high throughput computing elements for data parallelism and
hierarchical memory system for capturing producer-consumer locality. Large ALU
clusters or SIMD computing elements execute stream kernels. Stream register file
(SRF), organized by 128KByte SRAM and 22 stream buffers, captures
producer-consumer locality generated by the ALU clusters. Only reduced global
data are transferred through external SDRAM controller. The stream buffers stores
temporarily fragments of generated streams from eight cluster ports, eight network
ports, four external memory system ports, one microcontroller port and one host
system port before accessing SRAM, which yielding high bandwidth for the ALU
clusters. Although this massive architecture causes hugh power consumption, the
concepts of stream processing should be taken into account for designing mobile

graphics hardware for enhancing performance.

Imagine Processor

Stream
E Controller
Capture Long-term 1o
P-C Locality) » Microcontroller
f
ﬁf»\ | Arithmetic f
o y— 1
i £ 2 = Arithmetic
SDRAM S g w Clus er
)]] i
£ £ o
SDRAM € (2= e
1 s e = L
| o x === le
! 5 — | ’(.
! i Arithmetic
v Wi Cluster
\T/ \‘ ”s
Network | \ Y\ Local
Device | | Register
(Other | Network | \ 3 File
Imagines \ Interface \ 20GFLOPS ‘ Capture Short-term
or 1/0) \] | P-C Locality
2.67GBytes/s 32GBytes/s 544GBytesls

[Figure 5.1-3: Imagine Stream Processor]

CHAPTER 5 Enhancing Stream Processing 80

5.1.2 Stream Processing in 3D Graphics

Although graphics pipeline can be represented effectively as stream processing,
modern graphics system such as OpenGL [49] processes graphics data in
immediate mode basically. In this mode, each parameter of primitive is issued
immediately to graphics system by application programming interface (API)
function call, allowing representation of graphics primitives to match application's
own data structure. However, each API call interrupts graphics system and thus
reduces efficiency for stream processing. As a response of this point, OpenGL
supports vertex array functions to enable batch processing, reducing function call
overhead. Vertex array is defined as place where a block of vertex records such
as coordinates and colors may be stored in array format. Figure 5.1-2 shows the
difference between intermediate mode and vertex array mode. Since each element
in vertex array requires same operations repeatedly, graphics hardware can use

virtue of stream processing in vertex array mode.

[
[]
[
[
Coord 1)
Begin (TRIANGLES); L float Vertex_Array ={...};
Color3f(1, 0, 0); float Color_Array = {...};
Vertex3f(0, 0, 0); Coord 1 VertexPointer(Vertex_Array);
Color3f(0, 0, 1); ColorPointer(Color_Array);
Vertex3f(0, 1, 0);
.......... Color 1 DrawArray(TRIANGLES, 0,n);
End(); Coord 0
Color 0
Graphics Graphics
System System
(a) Immediate Mode (a) Vertex Array Mode

[Figure 5.1-2: Immediate Mode and Vertex Array Mode]

In order to enhance efficiency in processing vertex array, each element of vertex

array can be indexed and these indices can be used to reference actual vertex

CHAPTER 5 Enhancing Stream Processing 81

data. Since most of 3D graphics models are topologically same with a sphere,
some portions of vertex data can be used multiple times in representing models.
Thus, indexing vertex records and referencing indices instead of vertex data
themselves can reduce the total bandwidth consumed when handling long
sequence of triangles as shown in Figure 5.1-3. Since many implementations of
graphics system contain cache memory, reused vertices can be resided in cache
memory after first referencing. The indices can be used for tag information in
such cache operations. Moreover, because triangle strips represent each additional
triangle by adding just one vertex, strips can further reduce bandwidth. The most

optimal case is indexed strip.

V4
V5 :
V2 Vo i
V3 Vi iy
']
Vo V2 I
(a) Triangle Lists V3 iy
. . Typically
Vo V2 va . n<<m
ii " .
\% i
V3 V5 m
(b) Triangle Strip (c) Indexed Referenceing

[Figure 5.1-3: Indexed Drawing]

Modern graphics system such as OpenGL adopts client-server model. That is, a
program (the client) issues commands, and these commands are interpreted and
processed by the graphics system (the server). The server may or may not operate
on the same computer as the client. In this sense, the graphics system is
"network-transparent." A server may maintain a number of contexts, each of
which is an encapsulation of current state of graphics system. A client may

choose to connect to any one of these contexts. This separation gives much

CHAPTER 5 Enhancing Stream Processing

82

PSTYN

Application ; Dimddad
size Binded Graphics
tyPe Memory Pipeline
Initial Copy stride + v

of Vertex Data offset State

buffer Vertex Buffer
Vertex Buffer Objects
Parameters

Client (Host)

Server (Graphics Hardware)

[Figure 5.1-4: Vertex Buffer Object]

flexibility to implementations of graphics system. The implementations don't have

to consider client-specific features and only provide encapsulated graphics

functionality. The original implementation of vertex array is client-side features, in

that actual graphics data should be copied to server-side before processing. For

more efficient memory management, vertex buffer object (VBO) is introduced as

shown in Figure 5.1-4 [50]. In VBO, the storage of graphics data is resided in

server-side, that is graphics hardware. The graphics hardware can choose optimal

places for these storages and match them to its own memory system structure.

The client-side has only state parameters such as size, hints and mapping pointer.

These state information can be shared between graphics contexts like texture

Stream 0 Stream 1

e T

A 4 Y

Stream 0

T

<—Vertex Layout —>

\ 4

‘ pos ‘ tco ‘ nom1‘ <—— Declaration —> ‘ pos ‘ tco ‘ norm‘

[Figure 5.1-5: Vertex Declaration from Multiple Streams]

CHAPTER 5 Enhancing Stream Processing 83

objects. Therefore, the VBO and indexed operations can improve stram processing
in graphics hardware moderately. It is not restricted that each vertex data is stored
in a single VBO. Figure 5.1-5 illustrates the situation that a group of vertex

records are combined from multiple VBOs.

5.2 Enhancing Stream Processing in Graphics Processor

5.2.1 Architecture Revision

Figure 5.2-1 is the revised architecture of implemented graphics processor in
previous chapters for enhancing stream processing. Although the separation of
data transfer flow by coprocessor architecture gives benefits to stream processing
by improving parallelism of processing elements, the revised architecture contains
hierarchical memory system to capture producer-consumer locality more
effectively. The data transfer path composed of a single display buffer connected
directly to the vertex shader in the figure 2.2-2 is replaced by local multi-layer
bus architecture including DMA engine and separated display buffer memories
(gray region in the figure 5.2-1). The revised architecture can be explained by the
following features.

(a) Separated from main system bus, it has two bus layers for geometry
sub-system and rendering sub-system respectively. It can help the local traffic
generated by producer-consumer locality to be completely captured inside and
separated from global traffic that is transferred through main system bus. Also,
the two bus layers are assigned to each graphics pipeline wholly and connected
through bus bridges, increasing bandwidth throughput. Since the figure 2.1-1 in
the chapter 2 tells that transferring data from application to geometry stage and
transferring data from geometry stage to rendering stage altogether require half
gigabyte bandwidth per second, each sub-bus operating at 200MHz with 4-byte or

8-byte data width can provide sufficient performance. Because these added

CHAPTER 5 Enhancing Stream Processing 84

Main
System-bus
< I-cache |«
ARM
< » D-cache [«
| 4 Geometry Rendering
i v Sub-bus Sub-bus
Pre-TnL |
| Coprocessor M
Vertex | < >
! Interface < > DMA
Index |
1 A <«—» Controller
v Pre-TnL M
v Vertex &
_ Local Data M
Display | S
Buffero € Ext.DRAM | External
Vertex Controller € > System
SDRAM
Shader Display | S
Buffer1 [~ 7
Display | S
Buffer2 [7
v
Post-TnL Vertex Index
Vertex
FIFO
Index
v <—» Bridge
A 4 Post-TnL
P Vertex M
. Frame/ M
Rendering ¢, pepth |«
Engine Cache S | Ext. DRAM External
<> c .t 1 < » Graphics
M (elidietlzr Frame / Depth Buffer SDRAM
| Texture |, o &
Cache Model Data
€ —> < > < >
1st Level Memory: 2nd Level Memory: 3rd Level Memory:
Internal Registers of Capture Producer-Consumer Locality Global Data

Processing Elements

[Figure 5.2-1: Enhanced Graphics Processor for Stream Processing ("M" means that this

port is a bus-master, and "S" means that this port is a bus-slave)]

two-layer bus architecture is installed locally in the graphics sub-system instead of
in the global system bus, hardware cost such as power consumption and area can
be more reduced than conventional global multi-layer bus system.

(b) The revised architecture provides multiple (three) separated display buffer
memories for managing multiple streams. This feature can be utilized in

implementing VBOs with allowing optimal choice of memory locations.

CHAPTER 5 Enhancing Stream Processing 85

Generally, coordinates are assigned to each vertex while other parameters such as
normal vector and colors may be reused among multiple vertices. Therefore, some
VBOs can have different lifetime such as dynamic or stream types from others of
static type. Like illustration in the figure 5.1-5, display buffer 0 can be assigned
for coordinates of vertices before geometry operations (Pre-TnL) while display
buffer 1 is for other parameters of vertices. The vertex shader can use display
buffer 2 for storing vertex data after finishing geometry operations (Post-TnL). As
indicated in the figure 2.6-2 in the chapter 2, about 16kB is sufficient for the
capacity of each display buffer memory because single vertex data can be
distributed in two or more display buffer memories.

(c) The coprocessor interface and vertex FIFO that are originally used for the
command path in the figure 2.2-2 are utilized to transfer vertex indices between
processing elements. The coprocessor interface is used for transferring Pre-TnL
vertex indices while the vertex FIFO is for Post-TnL vertex indices. As described
in the figure 5.1-3, the indexed drawing reduces total bandwidth and are well
matched to the revised architecture of graphics processor. Using indices as
commands can improve issue efficiency of graphics processing elements because
the required bytes of indices are much smaller than the size of vertex data.

(d) The revised architecture suggests that external SDRAM can be attached to
the rendering sub-bus. This external SDRAM can store frame buffer data and
some texture images. It can also contain initial vertex model data before graphics
processing. In most cases, the graphics SDRAM can be stacked on die of the
graphics processor in a single chip package. If graphics pipeline is represented as
stream processing, the final frame buffer data can be resided in the graphics
SDRAM and separated from the initial input data stream, which is stored in the
system's main SDRAM.

(e) In the revised architecture, a single two port DMA engine connects the

CHAPTER 5 Enhancing Stream Processing 86

two-layer graphics sub-bus to the main system bus via a single master port. The
DMA engine is controlled by main ARM processor and thus every slave port in
the graphics sub-bus, that are all display buffer memories and the external
graphics SDRAM, are accessible in a common memory space of the ARM
processor. This configuration gives flexibility to managing memories. Moreover,
since the dual operations described in the section 2.4 allows the ARM processor
to operate in parallel with the vertex shader and the rendering engine, the DMA
engine controlled by the ARM processor can show maximum throughput in
transferring data between the display buffer memories and the system's main
memory. Also, the frame buffer data in the external graphics SDRAM can be
accessed directly to the main SDRAM through the DMA engine.

(f) The geometry sub-bus and the rendering sub-bus are connected to each other
a bus bridge, and another bus bridge is used to connect the rendering sub-bus to
the main system bus. The first bus bridge allows the rendering engine to access
the display buffer memories, causing local traffic generated from geometry stage
to be captured directly to rendering stage. The second bus bridge makes the
rendering engine to access system's main memory directly for texture data or to
use the main SDRAM as frame buffer in the absence of the graphics SDRAM.

Entirely, the ARM processor with graphics elements are wrapped by three bus
master ports. The coprocessor architecture makes the graphics processor to be
extended easily for enhancing stream processing with low cost by using typical
SoC building blocks such as two bus arbiters, two bus bridges and one DMA

engine.

5.2.2 Performance Limitation
The performance of the revised architecture can be estimated from amount of

provided bandwidth. The revised architecture can be regarded to have separate

CHAPTER 5 Enhancing Stream Processing 87

DRAMs to geometry and rendering stages. In a typical mobile applications, a
32-bit SDRAM chip running 100MHz (PC100) is used as external memory and
gives a suitable bandwidth 200MB/s with approximately 50% of efficiency. For
rendering stage, the required bandwidth for each buffer can be calculated by the
following relations.
BW = Pizel Fill Rate* Cache Miss Rate* Block Size* Pixel Size

From the description in the section 3.2.1, the required bandwidth for frame
buffer and depth buffer when filling 100Mpixels/s are 100.8MB/s and 38.4MB/s
respectively. Thus, if remaining bandwidth of the graphics SDRAM or the system
main memory are used for texture memories, pixel fill rate can be reached up to
tens of Mpixels per second.

For geometry stage, vertex data and related index can be fetched from the
system main memory. The indices are issued from the ARM processor via the
coprocessor interface and the vertex data are transferred from the DMA engine to

the display buffer memories. It is needed to restrict the provided bandwidth to the

12M -

10M - an®

©
=

| 1
[_|

L

6M

Processing Speed
(Vertices/s)

4M -

2M] -/
_/

om T T T T T T T T T
0 100 200 300 400
Bandwidth (MB/s)

[Figure 5.2-2: Performance Limitation of Mobile Graphics Hardware]

CHAPTER 5 Enhancing Stream Processing 88

vertex shader to about 100MB/s in order to allocate the remains to the ARM
processor or other devices. Figure 5.2-2 shows the relationship between the
provided memory bandwidth and the graphics performance when indexed drawing
is performed with composting vertex data from two streams. In this case, it is
assumed that the processing power of the vertex shader can provide the speed of
25Mvertices/s theoretically. In this graph, the best achievable performance does
not exceed about 10Mvertices/s. Therefore, the processing capability of mobile
graphics system should be designed to match that performance limitation in most

cases.

CHAPTER 6 Conclusions and Further Work 89

CHAPTER 6

Conclusions and Further Work

6.1 Conclusions

A low power graphics processor is designed, implemented and demonstrated for
mobile 2D and 3D graphics and various multimedia applications. Most graphics
architectures for mobile applications have mainly focused on rasterization and
texture mapping due to high processing requirements. In order to balance 3D
graphics pipeline within the limited system resources, | integrated simple and
efficient programmable architecture for vertex shading as well as low power
rendering engine instead of using dedicated hardware engine with complex

functions.

The proposed graphics processor has four major features: (a) Separation of data
transfer flow is proposed for efficient hardware and bandwidth utilization.
Different from previous works, the ARM coprocessor architecture enables
optimized performance throughput while achieving easy programmability by
separating command transfer path from data transfer path. (b) Full hardware
accelerations with stream processing is achieved to boost-up the sustained
performance in compact and fast hardware. The producer-consumer locality, that
are frequently observed in stream multimedia operations such as 3D graphics, is

also considered in hardware design. (¢) Two level extensions of instruction set

CHAPTER 6 Conclusions and Further Work 90

architecture are implemented for programmability and parallel processing. The
added multimedia instructions by the coprocessor architecture is once again
extended to more optimized graphics instructions by dual operations, in which
concurrent operations of the graphics coprocessor with the main processor is
enabled. And, (d) Fixed-point SIMD processing is employed for low power
consumption and low cost implementation. It exploits data level parallelism in

graphics processing while keeping the power consumption low.

The graphics processor contains an ARM10 compatible 32-bit RISC processor, a
128-bit programmable fixed-point single-instruction-multiple-data (SIMD) vertex
shader, a low power rendering engine with 26kB dedicated graphics cache, and a
programmable frequency synthesizer (PFS). The circuits and architecture of the
graphics processor are optimized for fixed-point operations and achieve the low
power consumption with help of instruction-level power management of the vertex
shader and pixel-level clock gating of the rendering engine. SIMD datapath of the
vertex shader achieves a single cycle throughput for most graphics instructions for
geometry operations. Also, the vertex shader can accelerate primitive assembly
such as clipping and culling by conditional executions and clip code instruction.
The rendering engine performs the rasterization and the per-pixel operations such
as pixel blending and texture mapping with energy-efficient graphics cache
system. The PFS with a fully balanced voltage-controlled oscillator (VCO)
controls the clock frequency from 8MHz to 200MHz continuously and adaptively
for low power modes by software. The 36mm’ chip shows 50Mvertices/s and
200Mtexels/s peak graphics performance for parallel projection, dissipating
155mW in 0.18um 6-metal standard CMOS logic process. In sustained operations,
the implemented graphics processor can calculate full 3D graphics pipeline

including geometry transformation, lighting, clip check, shading and bilinear

CHAPTER 6 Conclusions and Further Work 91

MIPMAP texture mapping at the speed of 3.6Mpolygons/s

For explanations and optimizations of mobile graphics architecture, model of 3D
graphics computing is described and simulated. Various parameters such as
memory capacity, bandwidth and batch size are analyzed to show influences in
overall performance. The implemented graphics processor with 32kB display
buffer is verified to show sufficient performance while consuming 100MHz
bandwidth. Since graphics pipeline can be represented effectively as stream
processing, | revised the architecture of graphics processor so that multimedia
streams can be more effectively processed. SIMD computing elements and
hierarchical memory system with multi-layer sub-bus and DMA engine replace the
data transfer path composed of a single display buffer connected directly to the
vertex shader. In the case of indexed drawing, the overall performance is expected

to be improved up to 8Mvertices/s and 100Mpixels/s.

The system evaluation platform is also developed to evaluate and demonstrate
mobile 3D graphics using a flexible topology and protocol. It includes software
graphics library with programming interface of the graphics processor for

simplifying application development.

The implemented graphics processor was successfully demonstrated on the

evaluation platform and verified real-time 3D graphics in mobile applications.

6.2 Further Works

Since software architecture for programmable shading and stream processing is
not sufficiently defined for mobile platforms, further research on optimal software

layers for mobile graphics system are required for highly effective performance

CHAPTER 6 Conclusions and Further Work 92

achievement. In the area of hardware research, more advanced bus architecture
and memory system such as accelerated graphics port (AGP) in PC graphics
system can be considered to be applied for mobile multimedia system. And, the
focus on the design of a fragment shader is required to generate more
photo-realistic pixels with high sustained throughput. Finally, the combination of
vertex shader, pixel shader and even 2D video engine in a single hardware

architecture will be studied.

Summary

93

Summary

SIMD Vertex ShaderZ

olg3 A

ZZ2agWE 3p 2IHIA T2 AA

Jdgas FuE HulgolA 7HE) e &
Fog dETedM = dHE AA AREAIE AL A
AR Al AE AL vy S Agetal vk A

A o AL FulolA 1

X0
N
>
oo
B
il
rlo
j—U
9!
I
i)
NI}
[>
o
rr

e
=)
o
N
N
N
o,
>
>~
>
ofo
_O|L
K
0,
N,
=)
Hn
Y
X
1o,
Jo
=
ofo
(98]
by
r*°

vertex shader&
dstlet. At TxE T
st=glo] 74, 5 A Y WHEel & &4
2974 SIMD A4kx9] U] 7HA]
Z2AAE 32 HE ARMI0 3.%He] RISC

ZEAA, 128 HIE

SIMD vertex shader, 26kB2] %= Z1|¥ X~ JNHE F2s A

72 rendering engine, 18] TZIYHE FI5 FAAV|E EFsta)
ARk Ql e 2 SF=gof o , Aljte ¥~ IR A= ARMI0
Bx Z2AAN eI o]2E ARRste] JAslaL, olF A ss T

Summary 94

ol e TRAMY FRe U FRE A ApH Akl A 3)s)e]
AAE A Th. HES vertex shader?] HEo] ©el A

engine®] A 9] clock gating 7] &S AF-&3sle] 2=

<4 WY 725 7HA = SIMD dAHEA = A 2ol st e
I~ T2ZAE HUREES B3] AyAHo= /\]odglgdjl, FOe 28¥ol
oA AR 33 e S YT

Bibliography 95

Bibliography

[1] John S. Montrym, et al, "NVIDIA GeForce 6800," in Proceedings. of HotChips
16, 2004

[2] Gordon Elder, "ATI Radeon 9700: Architecture and 3D Performance," in Hot3D
of ACM SIGGRAPH/Eurographics Workshop on Graphics Hardware, 2002

[3] Aurangeb Khan, et al, "A 150-MHz Graphics Rendering Processor with 256-Mb
Embedded DRAM," IEEE Journal of Solid-State Circuits, Vol. 36, No. 11, pp.
1775-1784, Nov. 2001

[4] David Clark, "Mobile processors begin to grow up", IEEE Computer Magazine,
Vol. 35, Issue 3, pp. 22-24, March, 2002

[5] Tomas Akenine-Moller, et al, "Graphics for the Masses: A Hardware Rasterization
Architecture for Mobile Phones," in Proceedings of ACM SIGGRAPH, pp. 801-808,
2003

[6] Ju-Ho Sohn, et al, "Optimization of Portable System Architecture for Real-time
3D Graphics," in Proceedings of IEEE International Symposium on Circuits and
System, pp. 1769-1772, 2002

[7] Donghyun Kim, et al, "An SoC with 1.3Gtexels/s 3-D Graphics Full Pipeline for
Consumer Applications," IEEE Journal of Solid-State Circuits, Vol. 41, No. 1, pp.
71-84, Jan. 2006

[8] Alan Watt, "3D Computer Graphics," 3rd edition, Addison-Wesley, 2000

[9] Kris Gray, "Microsoft DirectX 9 Programmable Graphics Pipeline," Microsoft
Press, 2003

[10] Ju-Ho Sohn, et al, "Low-power 3D Graphics Processors for Mobile Terminals,"

Bibliography 96

IEEE Communications Magazine, Vol. 43, No. 12, pp. 90-99, Dec. 2005

[11] Yong-Ha Park, et al, "A 7.1GB/s Low Power Rendering Engine in 2D Array
Embedded Memory Logic CMOS for Portable Multimedia System," IEEE Journal of
Solid-State Circuits, Vol. 36, No. 6, pp.944-955, Jun. 2001

[12] Chi-Weon Yoon, et al, "A 80/20MHz 160mW Multimedia processor Integrated
with Embedded DRAM, MPEG4 and 3D Rendering Engine for Mobile Applications,"
IEEE Journal of Solid-State Circuits, Vol. 36, No. 11, pp. 1758-1767, Nov. 2001
[13] Ramchan Woo, et al, "A 210mW Graphics LSI Implementing Full 3D Pipeline
with 264Mtexels/s Texturing for Mobile Multimedia Applications, " IEEE Journal of
Solid-State Circuits, Vol. 39, No. 2, pp. 358-367, Feb. 2004

[14] David A. Patterson, et al, "Computer Architecture: A Quantitative Approach,"
2nd edition, Morgan Kaufmann Publishers, 1996

[15] "ARM MBX HR-S 3D Graphics Core Technical Overview," Technical
Document, ARM DTO-0003B, 2002

[16] John S. Montrym, et al, "InfinityReality: A Real-time Graphics System," in
Proceedings of ACM SIGGRAPH, pp. 293-302, 1997

[17] Masanobu Okabe, et al, "A 90nm Embedded DRAM Single Chip LSI with a 3D
Graphics, H.264 Codec Engine, and a Reconfigurable Processor," in Proceedings of
HotChips 16, 2004

[18] Edward Hutchins, et al, "SC10: A Video Processor and Pixel Shading GPU For
Handheld Devices," in Proceedings of HotChips 16, 2004

[19] Masatoshi Kameyama, et al, "3D Graphics LSI Core for Mobile Phone: Z3D," in
Proceedings of ACM SIGGRAPH/Eurographics Workshop on Graphics Hardware, pp.
60-67, 2003

[20] Gregory Uvieghara, et al, "A Highly Integrated 3G CDMA2000 1X Cellular
Baseband Chip with GSM/AMPS/GPS/Bluetooth//Multimedia Capabilities and ZIF RF

Support,” in Digest of Technical Papers of IEEE International Solid-State Circuits

Bibliography 97

Conference, pp. 422-423, 2004

[21] Fumio Arakawa, "An Embedded Processor Core for Consumer Appliances with
2.8GFLOPS and 36Mpolygons/s," in Digest of Technical Papers of IEEE International
Solid-State Circuits Conference, pp. 334-335, 2004

[22] OpenGL-ES, available at http://www.khronos.org/opengles/

[23] OMAP, available at http://focus.ti.com/omap/docs/omaphomepage.tsp

[24] Matthew Eldridge, "Designing Graphics Architectures Around Scalability and
Communication," Ph.D. Dissertation, Stanford University, Jun. 2001

[25] Ju-Ho Sohn, et al, "A 50Mvertices/s Graphics Processor with Fixed-point
Programmable Vertex Shader for Mobile Applications," in Digest of Technical Papers
of IEEE International Solid-State Circuits Conference, pp. 192-193, 2005

[26] Ju-Ho Sohn, et al, "A 155mW, S5O0Muvertices/s Graphics Processor with
Fixed-point Programmable Vertex Shader for Mobile Applications," IEEE Journal of
Solid-State Circuits, Vol. 41, No. 5, pp. 1081-1091, May. 2006

[27] Steve Furber, "ARM: System-on-chip Architecture," 2nd edition, Addison-Wesley
Press, 2000

[28] Ian Thornton, "ARM PrimeXsys Wireless Platform," White Paper, available at
http://www.arm.com

[29] Ramchan Woo, "A Low-power 3D Rendering Engine with Two Texture Units
and 29Mb Embedded DRAM for 3G Multimedia Terminals," IEEE Journal of
Solid-State Circuits, Vol. 39, No. 7, pp. 1101-1109, Jul. 2004

[30] Intel Wireless MMX Technology, available at http://www.intel.com

[31] Prashant P. Gandhi, "SA1500: A 300MHz RISC CPU with Attached Media
Processor," in Proceedings of HotChips 10, 1998

[32] G. K. Golli, et al, "3D Graphics Optimization for ARM Architecture," presented
at Game Developer Conference 2002, March, 2002

[33] Xuejun Hao, et al, "Variable-precision rendering." in Proceedings of the 2001

Bibliography 98

Symposium on Interactive 3D Graphics, pp. 149-158, 2001

[34] Ju-Ho Sohn, et al, "A Programmable Vertex Shader with Fixed-point SIMD

Datapath for Low Power Wireless Applications,” in Proceedings SIGGRAPH

/Eurographics Workshop on Graphics Hardware, pp. 107-114, 2004

[35] Ju-Ho Sohn, et al, "A Fixed-point Multimedia Coprocessor for S0Mvertices/s

Programmable SIMD Vertex Shader for Mobile Applications," in Proceedings of

IEEE European Solid-State Circuits Conference, pp. 207-210, 2005

[36] Michael Deering, "Geometry compression”, in Proceedings of the 22nd Annual

Conference on Computer Graphics and Interactive Techniques, pp. 13-20, 1995

[37] Erik Lindholm, et al, "A User-programmable Vertex Engine," in Proceedings of

ACM SIGGRAPH, pp. 149-158, 2001

[38] Bengt-Olaf Schneider, "Efficient Polygon Clipping for an SIMD Pipeline," IEEE

Transactions on Visualization and Computer Graphics, Vol. 4, No. 3, Jul.-Sep. 1998

[39] HP Western Research Lab., CACTI, available:
http://research.compaq.com/wrl/people/jouppi/CACTL.html

[40] Ziyad S. Hakura, et al, "The Design and Analysis of a Cache Architecture for

Texture Mapping," in Proceedings of the 24th International Symposium on Computer

Architecture, pp. 108-120, 1997

[41] Norman J. Rohrer, et al, "A 64-bit Microprocessor in 130nm and 90nm

Technologies with Power Management Features," IEEE Journal of Solid-State

Circuits, Vol. 40, No. 1, pp. 19-27 Jan. 2005

[42] Masatoshi Imai, et al, "A 109.5mW 1.2V 600Mtexel/s 3-D Graphics Engine," in

Digest of Technical Papers of IEEE International Solid-State Circuits Conference, pp.

332-333, 2004

[43] Donglok Kim, et al, "Data Cache and Direct Memory Access in Programming

Media Processors," IEEE Micro, Vol. 21, No. 4, pp. 33-42, Jul. 2001

[44] Brucek Khailany, "Imagine: Media Processing with Streams", [EEE Micro, Vol.

Bibliography 99

21, No. 2, pp. 35-46, Mar. 2001

[45] William J. Dally, "Merrimac: Supercomputing with Streams," in Proceedings of
ACM/IEEE Supercomputing (SC) 2003

[46] Michael B. Taylor, et al, "The RAW Microprocessor: A Computational Fabric
for Software Circuits and General-purpose Programs," IEEE Micro, Vol. 22, No. 2,
pp. 35-46, Mar. 2002

[47] lan Buck, et al, "Brook for GPUs: Stream Computing on Graphics Hardware," in
Proceedings of ACM SIGGRAPH, 2004

[48] John D. Owens, et al, "Polygon Rendering on a Stream Architecture," in
Proceedings SIGGRAPH/Eurographics Workshop on Graphics Hardware, pp. 23-32,
2000

[49] Masoo Woo, et al, "OpenGL Programming Guide," 3rd edition, OpenGL
Architecture Review Board, Addison-Wesley, 1999

[50] Kurt Akeley, "Buffer Objects," presented at Game Developer Conference 2003,
March, 2003

Acknowledgement

A= 77k

—_—

-
ofy

Pl
el
B
o
oK

AL MY 222 Yot 2 A%

wo
T

=)

A Aok o At

Np

—_
1o

==
"o

il

Aty 2ear o]

;.OH
</

X

ol
op

ke A71E @ m
AFol @7l zarel

=

=

1 Q1o 7hg of

o

=elan AsUnh HAF AYA wiRE gl

1N
=

An
=

Lok

2]

=

]

AA H e dxyort =7 9

T NSl A A2

e AudE,

Al o' ¥ §E Adem volrt Aol 7}

B/

As}7)ol) =

AAsI] &
83 s

el

ol &

175

-

g~ ¥ 137]

=

<
T

71E

=
<]

Acknowledgement

bt

S

o] Z¥laL °o]F skt

o

o} %

A A

S

71315 FH

Fupsh 2o it 1w

=
L

o741 ohul A, o w7 A 4o]

ot

z}sﬂl—

d

&

S o
o=

b A A ZAke] vk

=l AN &

3t

Yo}, oz

?]st

JU-HO SOHN

2006-05-07

sohnjuho@eeinfo.kaist.ac.kr

Education

Korea Advanced Institute of Science and Technology (KAIST)
- Full Scholarship from KAIST
2003/03 ~2006/08 Ph.D. in Electrical Engineering
Dissertation: A Low Power Programmable 3D Graphics Processor with Fixed-point
SIMD Vertex Shader
2001/03 ~2003/02 M.S. in Electrical Engineering
Dissertation: Design and Optimization of Geometry Acceleration for Portable 3D
Graphics
1997/03 ~2001/02 B.S. in Electrical Engineering — Summa Cum Laude
Major: Electrical Engineering, Minor: Physics

Overall GPA: 3.95/4.30, Major GPA: 3.87/4.3

Working Experience

Korea Advanced Institute of Science and Technology (KAIST)

2001/03 ~ Present Research Assistant — Perform research mainly focused on various aspects of
circuits, architecture and system design, chip and software implementation. Major
research area includes mobile 3D computer graphics.

2001/03 ~ Present Teaching Assistant — Assistant teaching for Microelectronics Circuits, Computer

Architecture, SoC Design Course

Research Projects

DA (Digital Accessory) Project
Development of 3D Graphics Accelerator IP for Mobile Application Processor SoC
Sponsored by Samsung Electronics
2005/09 ~ 2006/08 Technical Advisor
2004/09 ~2005/08 Chief Researcher, Team Leader

Responsible for Software Graphics Library and Platform Development

Dept. of EECS, KAIST, 373-1, Guseong-dong, Yuseong-gu, Daejeon, Korea, 305-701
Contacts: +82-42-869-8068, sohnjuho@eeinfo.kaist.ac.kr

2003/09 ~2004/08

2003/03 ~2003/08

Responsible for Full Chip Architecture Design and Backend Process
Responsible for Programmable Graphics Engine RTL Design
Responsible for ARM10 Compatible RISC Processor RTL Design

MobileGL-C1

2004/03 ~2004/08

Development of 3D Graphics Library for Wireless Cellular Phones
Sponsored by MCRES
Responsible for Library Specification and Code Optimization for ARM7/ARM9

RAMP (RAM Processor) Project

2002/10 ~2003/02
2002/06 ~2002/09
2001/09 ~2002/05

Development of Application Specific Embedded Memory Logic Design Technology
Sponsored by Korea Ministry of Science and Technology, Korea Ministry of
Commerce, Industry and Energy

Responsible for Evaluation Platform Development

Responsible for Software Graphics Library Development

Responsible for Buffer Controller RTL Design and SRAM Full-custom Design

X-Switch (Extra High Speed Switch) Project

2001/03 ~2001/08

Development of Hardwired Network Processor using Embedded Memory Process
Sponsored by Samsung Electronics

Responsible for ARM7 Compatible RISC Processor Design Using SystemC

International Journal Papers (First-authored Papers Only)

JSSC
2006

COMM
2005

International Conference Papers

A 155mW, S0Mvertices/s Graphics Processor with Fixed-point Programmable
Vertex Shader for Mobile Applications

Ju-Ho Sohn, Jeong-Ho Woo, Min-Wuk Lee, Hye-Jung Kim, Ramchan Woo and
Hoi-Jun Yoo

IEEE Journal of Solid State Circuits, Vol. 41, No. 5, May 2006

Low Power 3D Graphics Processors for Mobile Terminals

Ju-Ho Sohn, Yong-Ha Park, Chi-Weon-Yoon, Ramchan Woo, Se-Jeong Park and
Hoi-Jun Yoo

IEEE Communications Magazine, Vol. 43, No. 12, December 2005

(First-authored Papers Only)

DATE
2006

Design and Test of Fixed-point Multimedia Co-processor for Mobile
Applications

Dept. of EECS, KAIST, 373-1, Guseong-dong, Yuseong-gu, Daejeon, Korea, 305-701
Contacts: +82-42-869-8068, sohnjuho@eeinfo.kaist.ac.kr

Ju-Ho Sohn, Jeong-Ho Woo, Jerald Yoo and Hoi-Jun Yoo

Design, Automation and Test in Europe, 2006
ESSCIRC A Fixed-point Multimedia Co-processor with S0Mvertices/s Programmable
2005 SIMD Vertex Shader for Mobile Applications

Ju-Ho Sohn, Jeong-Ho Woo, Ramchan Woo and Hoi-Jun Yoo

IEEE European Solid-State Circuits Conference, 2005
1sscc A 50Mvertices/s Graphics Processor with Fixed-point Programmable Vertex
2005 Shader for Mobile Applications

Ju-Ho Sohn, Jeong-Ho Woo, Min-Wuk Lee, Hye-Jung Kim, Ramchan Woo and

Hoi-Jun Yoo

IEEE International Solid-State Circuits Conference, 2005
HWWS A Programmable Vertex Shader with Fixed-point SIMD Datapath for Mobile
2004 Applications

Ju-Ho Sohn, Ramchan Woo and Hoi-Jun Yoo

ACM SIGGRAPH/Eurographics Workshop on Graphics Hardware, 2004
ISCAS Optimization of Portable System Architecture for Real-Time 3D Graphics
2002 Ju-Ho Sohn, Ramchan Woo and Hoi-Jun Yoo

IEEE International Symposium of Circuits and Systems, 2002

Patents

1. Apparatus for Accelerating Multimedia Processing by Using Co-processor
Ju-Ho Sohn, Ramchan Woo, Hoi-Jun Yoo
Korean Patent Number: 1004659130000

2. Apparatus for Accelerating Multimedia Processing by Using Co-processor
Ju-Ho Sohn, Ramchan Woo, Hoi-Jun Yoo
Korean Patent Number: 1004636420000

3. Apparatus for Controlling Buffer Memory in Computer System
Ju-Ho Sohn, Ramchan Woo, Hoi-Jun Yoo
Korean Patent Number: 1004480710000

Research Interests

1. Mobile 2D/3D Graphics Architectures and Their Software/Hardware Implementations
2. Multimedia Signal Processing in Consumer Electronics

2. Computer Architecture (Streaming Processor, Embedded RISC Processor)

Dept. of EECS, KAIST, 373-1, Guseong-dong, Yuseong-gu, Daejeon, Korea, 305-701
Contacts: +82-42-869-8068, sohnjuho@eeinfo.kaist.ac.kr

Skillful Tools

1. High-level Design: C/C++, JAVA, SystemC

2. Graphics Library: OpenGL / OpenGL-ES

3. Logic Design: Verilog-XL, Synopsys Design Compiler, Astro P&R Tools

4. Circuit Design: Cadence OPUS, EPIC nanosim, Hspice, Calibre DRC/LVS

5. Software Programming: Windows MFC, Windows WDM, Windows COM+, Linux QT, ARM ADT/ADS

Language

1. Korean as a Domestic Language
2. Proficient English

3. Beginning Japanese

Dept. of EECS, KAIST, 373-1, Guseong-dong, Yuseong-gu, Daejeon, Korea, 305-701
Contacts: +82-42-869-8068, sohnjuho@eeinfo.kaist.ac.kr

