
박사학위논문

Doctoral Thesis

고정 소수점 를 이용한SIMD Vertex Shader
저전력 프로그래머블 그래픽스 프로세서3D

A Low Power Programmable 3D Graphics Processor
with Fixed-point SIMD Vertex Shader

손 주 호 (Sohn, Ju-Ho)孫住鎬

전자전산학과 전기 및 전자공학 전공

Department of Electrical Engineering and Computer Science
Division of Electrical Engineering

한 국 과 학 기 술 원

Korea Advanced Institute of Science and Technology

2006

고정 소수점 를 이용한SIMD Vertex Shader

저전력 프로그래머블 그래픽스 프로세서3D

A Low Power Programmable 3D Graphics

Processor with Fixed-point SIMD Vertex Shader

A Low Power Programmable 3D Graphics Processor

with Fixed-point SIMD Vertex Shader

Advisor: Professor Yoo, Hoi-Jun

By

Sohn, Ju-Ho

Department of Electrical Engineering and Computer Science

Division of Electrical Engineering

Korea Advanced Institute of Science and Technology

A thesis submitted to the faculty of the Korea Advanced Institute of

Science and Technology in partial fulfillment of the requirements for

the degree of Doctor of Philosophy in the Department of Electrical

Engineering and Computer Science, Division of Electrical

Engineering

Deajeon, Korea

2006. 6. 3

Approved by

Professor Yoo, Hoi-Jun

고정 소수점 를 이용한SIMD Vertex Shader

저전력 프로그래머블 그래픽스 프로세서3D

손 주 호

위 논문은 한국과학기술원 박사학위 논문으로

학위논문 심사위원회에서 심사 통과하였음.

년 월 일2006 5 29

심사위원장 유 회 준 인()

심사위원 김 성 대 인()

심사위원 나 종 범 인()

심사위원 박 인 철 인()

심사위원 김 재 민 인()

The real time 3D graphics becomes the most attractive application for mobile

terminals, in which the battery lifetime and small computing power, however,

limit the system resources and memory bandwidth for graphics processing.

Besides, since users watch graphics images on a small screen very closely to their

eyes, recent mobile 3D graphics are introducing the programmability in both

hardware and software for more advanced functionality while achieving low

power consumption. In this research, I designed and implemented a programmable

graphics processor with fixed-point vertex shader for mobile applications. The

proposed architecture has four major features: separation of data transfer flow, full

hardware accelerations with stream processing, two level extensions of instruction

set architectures, and fixed-point single-instruction-multiple-data (SIMD)

processing. The graphics processor contains an ARM10 compatible 32-bit RISC

processor, a 128-bit programmable fixed-point SIMD vertex shader, a low power

rendering engine with 26kB dedicated graphics cache, and a programmable

frequency synthesizer (PFS). Different from conventional graphics hardware, the

proposed graphics processor implements ARM10 coprocessor architecture with

dual operations so that user-programmable vertex shading is possible for advanced

graphics algorithms and various streaming multimedia processing in mobile

applications. The circuits and architecture of the graphics processor are optimized

, Sohn, Ju-Ho, A Low Power Programmable
3D Graphics Processor with Fixed-point SIMD Vertex
Shader. SIMD Vertex Shader

3D .
Department of Electrical Engineering and Computer
Science, Division of Electrical Engineering. 2006,
99p. Advisor Professor Yoo, Hoi-Jun. Text in English

for fixed-point operations and achieve the low power consumption with help of

instruction-level power management of the vertex shader and pixel-level clock

gating of the rendering engine. The PFS with a fully balanced voltage-controlled

oscillator (VCO) controls the clock frequency from 8MHz to 200MHz

continuously and adaptively for low power modes by software. The 36mm2 chip

shows 50Mvertices/s and 200Mtexels/s peak graphics performance, dissipating

155mW in 0.18 6-metal standard CMOS logic process. For more enhancement㎛

of stream processing, model of 3D graphics computing is analyzed and SIMD

computing elements with hierarchical memory system is revised into the

architecture of graphics processor. The implemented graphics processor was

successfully demonstrated on the evaluation platform and verified real-time 3D

graphics in mobile applications.

Table of Contents

i

CHAPTER 1 Introduction

1.1 Mobile Multimedia Terminals 1

1.2 3D Graphics Pipeline 3

1.2.1 Traditional Graphics Pipeline 3

1.2.2 Programmable Graphics Pipeline 5

1.2.3 Cycle Breakdown of Graphics Pipeline 6

1.3 Related Works 8

1.3.1 RAMP by KAIST 8

1.3.2 MBX by PowerVR 11

1.3.3 Playstation Portable by Sony 13

1.3.4 SC10 by nVDIA 14

1.3.5 Others 15

1.4 Architecture Summary of Mobile Multimedia Hardwares 16

1.5 Contributions of This Research 18

CHAPTER 2 System Architecture

2.1 Model of 3D Graphics Computing 20

2.2 Separation of Data Transfer Flow 22

2.3 Full Hardware Accelerations with Stream Processing 25

2.4 Two Level Extensions of Instruction Set Architecture 27

2.5 Fixed-point SIMD Processing 30

2.6 System Analysis 34

Table of Contents

ii

CHAPTER 3 Design of Graphics Processor

3.1 Fixed-point SIMD Vertex Shader 41

3.1.1 Internal Architecture 41

3.1.2 Instruction Set Architecture 44

3.1.3 SIMD Datapath Design 48

3.1.4 Operation Model 53

3.2 Rendering Engine 55

3.2.1 Internal Architecture 55

3.2.2 Instruction Set and Vertex FIFO 57

3.3 Low Power Techniques 60

3.3.1 Instruction-wise Power Management 60

3.3.2 Pixel-level Clock Gating 62

3.3.3 Programmable Frequency Synthesizer 63

CHAPTER 4 Chip Implementation

4.1 Implementation Results 67

4.2 Evaluation Platform 71

4.3 Performance Comparison 73

CHAPTER 5 Enhancing Stream Processing

5.1 Data Stream Architecture 77

5.1.1 Concepts of Stream Processing 77

5.1.2 Stream Processing in 3D Graphics 80

Table of Contents

iii

5.2 Enhancing Stream Processing in Graphics Processor 83

5.2.1 Architecture Revision 83

5.1.2 Performance Limitation 86

CHAPTER 6 Conclusions and Further Work

6.1 Conclusions 89

6.2 Further Work 91

Summary

Bibliography

Acknowledgement

CHAPTER 1 Introduction 1

CHAPTER 1

Introduction

1.1 Mobile Multimedia Terminals

The popularity of mobile terminals such as smart cell-phones and wireless personal

digital assistants (PDAs) is increasing with the rapid expansion of the mobile

electronics market and its migration from text-based applications to various multimedia

applications. Today's mobile terminals are evolving to become wireless multimedia

centers that allow us to take pictures, watch 2D graphics animations and MPEG4

movies, listen to MP3 music, and enjoy Java games. Among these applications,

real-time 3D graphics becomes one of the most attractive applications. It is especially

beneficial to games, advertisement, and avatars whose data can be downloaded over the

wireless network. Complex 3D scenes can also be represented by lists of vertices,

texture images, and corresponding camera movements, yielding high data compression

ratios, so as to make 3D graphics advantageous for bandwidth-critical wireless

applications.

Since the real-time 3D graphics requires huge computing power and corresponding

memory bandwidth, it has been a critical issue even in PC or console platforms during

the past ten years [1-3]. Although today's PC graphics accelerators can draw

high-quality 3D images with high performance graphics processing unit (GPU),

however, handheld devices cannot tolerate those tens-of-watt power monsters. Figure

1.1-1 shows the mobile multimedia terminal and its requirements. For mobile

CHAPTER 1 Introduction 2

applications, the low power consumption is the most important issue because of limited

battery lifetime. When we use a typical Li-ion battery of 2000 mWh energy capacity,

the power budget of graphics system including processing and internal memory access

should be limited to less than 200mW for two or three hours seamless operation. The

Advanced RISC Mahcine (ARM) processor family that has the reduced instruction set

computer (RISC) architecture is widely used as the main platforms for wireless

applications because of its high MIPS/Watt [4]. However, these low power RISC

platforms have very limited system resources in terms of computation power and

memory bandwidth, so that the additional mobile graphics processor should be

implemented to consume as little energy as possible in the given platforms. Moreover,

since users are watching 3D graphics images on a small screen very closely to their eyes

[5], the graphics processor must generate high quality of graphics images with high

performance such as more than 1Mvertices/s processing speed. And, the variety of

applications in a single hardware requires the programmability for advanced and

flexible algorithms such as programmable vertex shading and image processing. Also,

the low-cost aspect cannot be ignored because the target system will be carried by

everybody's hand.

Recently, several researchers have tried to increase the mobile graphics capabilities in

mobile applications. Since the rasterization and texture mapping require more

[Figure 1.1-1: Mobile Multimedia Terminal and Its Requirements]

CHAPTER 1 Introduction 3

processing complexities than the rest of operations in 3D graphics pipeline [6], most of

graphics architectures have mainly focused on the rendering pipeline and achieved the

efficient graphics performances [5][7][11-13]. However, since relatively little attention

has been given to 3D geometry operations, now they become the performance barriers

in 3D graphics pipeline. In the previous architectures, the general-purpose RISC

processors with simple integer datapath [11-13] or conventional bus-mapped

floating-point datapath [7] were used to process geometry operations. However, simple

integer datapath cannot provide the required performance of programmable graphics

processing. In the case of conventional floating-point datapath, the performance is also

limited due to low operating frequency for limited power consumption.

1.2 3D Graphics Pipeline

1.2.1 Traditional Graphics Pipeline

The definition of graphics pipeline is the sequence of processes applied to

transform a three-dimensional image into a two-dimensional screen and can be

considered as the transformation between coordinate systems as shown in Fig.

1.2-1. The pipeline is responsible for processing information initially provided just

as properties at the end points (vertices) or control points of the geometric

primitives used to describe what is to be rendered. The typical primitives in 3D

graphics are lines and triangles. The type of properties provided per vertex

include x-y-z coordinates, RGB values, translucency, texture, reflectivity and other

characteristics.

[Figure 1.2-1: Coordinate Transforms in 3D Graphics Pipeline]

Object
Coordinate

Eye
Coordinate

Clip
Coordinate

Device
Coordinate

3D Model
Data

2D
Screen

Modelview
Transform

Perspective
Projection

Perspective
Division

CHAPTER 1 Introduction 4

Figure 1.2-2 shows the traditional graphics pipeline. It is composed of geometry

operations calculating the attributes of vertices of triangles, and rendering

operations filling colors inside the triangles [8]. The geometry stage processes

polygon data from input models by performing operations such as transformation,

lighting, and perspective projection. Especially, the light effect is calculated by

blending ambient, specular, diffuse, and emission component originated by each

light source. Therefore it is computation-intensive, but the bottleneck can be

relieved by using fast, parallel datapaths such as multi-core vector processors with

3D graphics-optimized instruction set architecture. Software simulation indicates

that over 40GOPS is required when calculating the full suite of geometry

operations at speed of 1Mvertices/s in conventional embedded RISC processors

with floating-point graphics library [6]. The rendering stage takes the output of

the geometry stage and draws pixels to the screen buffer. It first sets up triangles

in 2D screen from 3D geometry data and performs interpolation to calculate edge

coordinates of each triangle. Then it renders each pixel by shading and texture

mapping, and also performs alpha-blending for translucent objects and

z-comparison for hidden surface removal. The rendering stage operations are

[Figure 1.2-2: Traditional Fixed Graphics Pipeline]

 Lighting

Clipping

Perspective Projection

Object Properties

Model

Texture Coordinate

Polygon Setup

XYZ Interpolation

Z Compare

Texture Access

UV Calculation

Color Blending

Texture Filtering

Alpha Blending

Gouraud Shading

Transformation

Geometry Stage Rendring Stage

CHAPTER 1 Introduction 5

memory-intensive due to frequent accesses of the frame buffer, depth buffer and

texture memory. An effective graphics system memory bandwidth of 1GB/s is

required to show realistic 3D images with a pixel fill rate of 1Mpixels/s on

today's mobile terminals with QVGA screen size.

1.2.2 Programmable Graphics Pipeline

Figure 1.2-3 shows the comparison between traditional graphics pipeline and

programmable graphics pipeline. In the traditional graphics pipeline, each unit has

specific function with dedicated hardware block. So, it cannot give the flexibilities

to various graphics algorithms although it can be fast and efficient in fixed

graphics processing. Whether the batch processing such as vertex array is

employed or intermediate mode (sample code segment shown in the left of the

figure) is chosen, programmers cannot control the behavior of internal graphics

pipeline except mode or parameter settings.

In the programmable graphics pipeline, there are vertex shaders and fragment

shaders, which are optimized single-instruction-multiple data (SIMD) processors

[9]. The vertex shader can execute vertex program, composed of assembly

graphics instructions. It enables various user-defined vertex processing of

geometry pipeline for flexible 3D graphics functions. The fragment shader is

responsible for user-programmable pixel operations for realistic graphics images. It

can execute fragment program, composed of assembly graphics instructions

optimized for rendering pipeline. Now, programmers can control and calculate any

attributes of vertex and pixel by their specific programs on instruction-set

architecture (ISA) driven graphics processor. In addition to typical transformation

lighting and texture mapping, various graphics effects such as shadow volume

creation, vertex blending, motion blur, silhouette rendering and per-pixel phong

lighting are made possible.

CHAPTER 1 Introduction 6

In the case of mobile 3D graphics, the programmable pipeline can be more

useful, because we perform the graphics operations by software optimization in

the programmable shaders instead of many complex hardware blocks. It eliminates

unnecessary steps in graphics pipeline on specific input conditions. Moreover, the

programmability in mobile terminals can allow the various multimedia applications

to be optimized through software in a single compact and fast hardware.

1.2.3 Cycle Breakdown of Graphics Pipeline

Before designing mobile graphics architecture, cycle usage of each graphics

pipeline stage were analyzed on conventional embedded RISC processor

architecture such as ARM platforms [6].

Fig. 1.2-4 shows cycle breakdown of each sequence of 3D pipeline normalized to

ARM7 cycle time when conventional software floating-point graphics library is

performed. The most time consuming part of the geometry stage is the calculation of

specular lighting due to the distance calculation between light source and object as well

[Figure 1.2-3: Programmable Graphics Pipeline]

CHAPTER 1 Introduction 7

as normal vector of the object. To calculate specular lighting, floating-point divisions

and square root operations are required. For the rendering stage, texturing consumes

most of time, because it uses logarithmic and exponential operations to find level of

detail (LOD) value, and it frequently accesses texture memory.

Fig. 1.2-5 shows instruction pattern of the geometry and rendering stage with SRAM

interface as memory system. The load/store cycles were counted only when the datapath

was owned by memory access instruction. The rendering stage has more memory access

cycles than geometry stage in all of the processor types. It means that the memory

bandwidth is more critical than computing complexity in the rendering stage. The

[Figure 1.2-4: Cycle Breakdown of Floating-point Graphics Library]

0.0

0.2

0.4

0.6

0.8

1.0

StrongARMARM9ARM7

Rendering

Geometry

N
or

m
al

iz
ed

 C
lo

ck

α -Blending
 Texture
 Shading
 Rendering Setup
 Perspective Projection

 Ambient Light
 Diffuse Light
 Specular Light
 Emission Light
 Transformation

[Figure 1.2-5: Cycle Pattern of Graphics Pipeline]

R : Rendering Stage

0.0

0.2

0.4

0.6

0.8

1.0

0.138

0.25

0.058

0.214

0.142

0.30

0.061

0.247

0.205

0.228

0.22

0.34

N
or

m
al

iz
ed

 C
lo

ck

StrongARMARM9ARM7

G : Geometry stage

 Load/Store (R)
 Computation (R)
 Load/Store (G)
 Computation (G)

CHAPTER 1 Introduction 8

portion of load/store cycles is cut in half for ARM9 and StrongARM that use Harvard

architecture in geometry stage. It is because in Harvard architecture, the instruction and

data can be fetched simultaneously. Since the required memory bandwidth can't be

solved in conventional processor architecture, there is no performance enhancement in

rendering stage even if ARM9 or StrongARM is used.

In order to enhance the computing efficiency of ARM's integer datapath, the

fixed-point graphics library was also analyzed. The cycle pattern is similar to the

case of the floating-point graphics library, However, the performance of geometry

stage is more improved than the rendering stage. Figure 1.2-6 shows the cycle

breakdown in this case. When using the fixed point library, the 79% of total cycle

times is spent in rendering stage and the performance of 3D pipeline is limited by pixel

fill rate. It is because the high memory bandwidth required in rendering stage cannot be

solved by means of increasing the computing efficiency.

1.3 Related Works

1.3.1 RAMP by KAIST

The memory bandwidth is the most stringent constraint in implementing 3D

graphics architecture. Solving the bandwidth bottleneck with traditional approaches

such as high-speed crossbar and off-chip DDR-SDRAMs can result in increased power

consumption. However, the limited screen resolutions in mobile terminals (e.g.,

QVGA) imply that the reasonable amount of integrated memory, from tens of kByte to

[Figure 1.2-6: Cycle Breakdown of Fixed-point Graphics Library]

Geometry
(0.21)

Rendering
(0.79)

CHAPTER 1 Introduction 9

hundreds of kByte, is sufficient for graphics memories such as highly hit-rated caches or

frame buffers [10]. Moreover, integrating whole necessary memory itself with logic in a

single die yields more effective architectures or implementation schemes in terms of

performance and power consumption. The RAMP design methodology of KAIST is

based on the philosophy that memory is no longer a passive device, nor a sub-system.

The RAMP (RAM Processor) architecture utilizes embedded DRAM (eDRAM) for 3D

rendering in a very efficient manner that avoids connecting the memory with a large

number of wires and corresponding crossbar switch. Three RAMP chips were

evaluated in order to demonstrate the RAMP architectures and methodology [11-13].

The latest RAMP-IV [13] focuses more on real-time 3D gaming applications, drawing

bilinear MIPMAP texture-mapped pixels with special rendering effects at 66Mpixels/s

and 264Mtexels/s, as well as supporting shading operations of the previous RAMP

architectures. Figure 1.3-1 shows SlimShader architecture developed in RAMP-IV. It

consists of a triangle setup engine, an edge processor (EP), two pixel processors (PXPs),

and 29Mb of embedded DRAM. The reduced number of PXPs is compensated by using

[Figure 1.3-1: SlimShader Architecture]

512kb Depth Buffer 0

Triangle Setup Engine (TSE)

Polygon Fetch Engine

PP0 PP1

Texture Address Texture Address

Address Alignment Logic
(AAL)

Memory
Programmer

(MP)

Interpolation /
Depth Comparison

Interpolation /
Depth Comparison

Texture Filter

Pixel Blending Pixel Blending

6Mb
Texture
Memory

0

24b 24b

24b24b

SlimShader

32b

48b

6Mb
TM1

6Mb
TM3

6Mb
TM2

512kb DB1

512kb DB2

512kb DB3

768kb Frame Buffer 0

768kb FB1

768kb FB2

768kb FB3

Vertex
Data

128b

Display Output
24b

32b

32b

32b

48b

48b

48b

Texture Filter

CHAPTER 1 Introduction 10

deeply pipelined PXP structure for high clock frequency of 50MHz. Since texture

mapping is crucial function in real-time 3D graphics for more realistic pictures,

SlimShader contains two energy-efficient texture engines (TEs). In bilinear filtering,

two pixels mapped to texel space require 8 texture memory requests at every cycle,

causing huge power consumption. TEs employ Address Alignment Logic (AAL),

which uses temporal and spatial localities of texture addresses in MIPMAP-filtering to

reduce total memory requests, yielding power saving. For real-time special effects such

as fog, anti-aliasing and cartoon shading, memory programmer is implemented in

SlimShader, and post-processes the rendered pixels of frame buffer by using dedicated

instruction set and SIMD datapath.

RAMP-IV distributes the embedded DRAM over the logic pipeline via different

ports, in addition to pixel-parallel distribution. Each pipeline stage can directly

and concurrently access the contents of DRAM, just like accessing dedicated local

SRAM. Satisfying the pipeline timing is a big challenge in terms of DRAM

design as the cycle time (tRC) of embedded DRAMs must be less than 20ns,

while commodity SDRAMs are working at 65ns or more. The timing budget of

frame and depth buffers is even stricter as the read-data must be written back to

the same address within a single cycle for efficient Read-Modify-Write (RMW)

transactions. Distributing the DRAMs over the pipeline and accessing one or some

of them selectively can reduce the power consumption of memory by 65%. Since

the depth of the processed pixel is compared at the first stage of PXP pipeline,

the following stages and corresponding memories can be gated off according to

comparison result.

The SlimShader architecture is integrated into a RAMP-IV chip together with an

ARM9-compatible RISC processor with enhanced multiply-and-accumulate

(MAC), 29Mb embedded DRAM, and a power management unit as shown in

Figure 1.3-2. The chip was fabricated using 0.16 Hynix 256Mb SDRAM㎛

CHAPTER 1 Introduction 11

process. Its area and power consumption were 121mm2 and 10mW respectively.

The RAMP-IV chip utilizes a pure DRAM process to reduce the fabrication cost.

Although the pure DRAM process has slower logic transistor speed and fewer

metal layers, a 133MHz speed could be achieved in the chip's RISC processor.

Negligible sub-threshold leakage current of the DRAM process also reduces

standby current, which is a critical issue for battery-driven device. However,

RAMP-IV accelerates only rendering operations, which occupy 79% of total

execution time. Therefore, Amdhal's law [14] tells that this limited functionality

guarantees only five times performance speed-up compared with software-only

implementation at most in actual cases.

1.3.2 MBX by PowerVR

MBX is 2D/3D graphics core co-developed by Imagination Technology and

ARM to accelerate 2D/3D graphics on ARM-based mobile platform [15]. As

shown in Figure 1.3-3, MBX contains a tile rasterizer, a hidden surface removal

(HSR) engine, a vertex geometry processor (VGP), a texture shading unit, a pixel

[Figure 1.3-2: RAMP-IV by KAIST]

ARM-9
Core 4KB

I$
4KB
D$

1KB Polygon BufferBEQ Controller

SlimShader

M
em

or
y

Pr
og

ra
m

m
er 3Mb

Frame Buffer

2Mb
Depth Buffer

24Mb
Texture Memory

MAC Ca
ch

e
C

on
tro

lle
r

PLL

RISC

External
I/O 32b

Clock
Control

Unit

PMU

32b BEQ

128b

Triangle Setup

Pixel
Processor

0

416b

3DRE DRAM

24b
Display
Output Pixel

Processor
1

Texture
Engine

Texture
Engine

CHAPTER 1 Introduction 12

blender and 512kB texture cache. It also has its own memory controller with

virtual memory functions to reduce the overhead of host system. Energy

consumption is proportional to the number of memory access, so many researchers

focus on reducing off-chip bandwidth to enhance the battery lifetime for mobile

3D applications. Unlike the conventional graphics architecture [16], MBX reduces

memory accesses by tile-based rendering, in that a scene is partitioned into small

tiles or regions and each region is rendered independently. This deferred rendering

techniques may reduce the bandwidth to access data for frame and textures,

however it needs extra time and bandwidth to setup parameters for tiling itself.

To process the geometry operations, MBX has 4-way SIMD floating point VGP

optimized for 3D graphics. VGP can operate with rate of 4 FLOPS at the 120MHz in

the 0.13 CMOS logic process. It can be used as hardware transformation and lighting㎛

engine. MBX is the embedded 2D, 3D and video acceleration cores which can be

integrated with the conventional RISC core via system bus. Although it has the

all necessary hardware blocks for 3D graphics, the performance can be lower than

expected because the bus architecture is used as the interface between the host

processor and embedded core. The bus traffic caused by transferring the data

[Figure 1.3-3: PowerVR's MBX]

Tile
Accelerator

Vertex
Geometry
Processor

Hidden
Surface
Removal
Engine

Texture
Shading

Unit

Pixel
Blender

Texture
CacheDisplay list

Parser

SoC
Interface

Event
Manager

Arbiter

Display list Z-Buffer Display list Texture

Memory Interface

ARM
RISC

AHB

CHAPTER 1 Introduction 13

preprocessed by host processor to the embedded core can be bottleneck of

performance. Therefore, the sustained pixel fill rate can be only 9Mpixels/s at

100MHz, which is less than 10% of maximum rendering performance. Moreover

the cost was increased by complex system architecture.

1.3.3 Playstation Portable by Sony

In 2004, Sony released Playstation PortaleTM (PSP) for real-time 3D graphics

gaming applications and other multimedia such as MPEG video and MP3 audio in

battery-operated consumer electronics products [17]. It contains all necessary

hardware blocks required in handheld video gaming system, including a MIPS

processor with vector floating-point unit (FPU), 3D graphics module and media

processing unit. The PSP features 4MByte of embedded DRAM to boost internal

memory bandwidth and support Read-Modify-Write operations for 3D graphics.

Figure 1.3-4 shows the 3D graphics module implemented in the PSP. The

graphics module consists of surface engine and rendering engine. The surface

engine reduces the model data size by supporting high speed tessellation for

Bezier and Spline surfaces while increasing reality of graphics images. It also

supports hardware transformation and lighting operations, and more advanced

graphics algorithms such as geometry and vertex blending for skinning and

morphing. Four parallel pixel pipeline of the rendering engine can draw various

types of graphics images at the speed 664Mpixels/s at 166MHz operating

frequency. Although the conventional bus protocol was used for interfacing with

host system, the direct eDRAM controller attached in the rendering engine can

reduce the memory bandwidth requirements concentrated to external DDR main

memory. This eDRAM controller also. allows host system to access directly video

memory for flexible memory operations. The media processing unit equips

hardwired H.264 codec for MPEG accelerations and virtual media engine for

CHAPTER 1 Introduction 14

real-time reconfigurable audio/video codec implementation while achieving low

power and low cost. However, the relatively high power consumption and

complex system architecture of the PSP make it difficult its application in mobile

terminals such as cell-phones. More optimizations in both of functionalities and

architectures are required.

1.3.4 SC10 by nVidia

nVidia's SC10 is a companion chip for handheld devices such as PDAs and

cell-phones, accelerating images, video, 2D and 3D graphics [18]. Figure 1.3-5

shows chip block diagram and 3D graphics engine. It operates with assumption of

host processor and external memory, and interfaces with host processor from 8-bit

to full 32-bit I/O. The equipped full duplex hardware MPEG-4 codec and serial

bus interface for camera control with own LCD interface enables various

multimedia solutions in a single chip. The SC10 distinguishes itself from other

architectures by implementing pixel-level programmability such as blending and

combining operations for more realistic graphics images on handheld displays. The

embedded 1280kB SRAM provides large vertex cache for reducing external

[Figure 1.3-4: 3D Graphics Module in the PSP]

Host
I/F

Blend Subdiv. T&L Vsort Clip

Setup DDA TXM PIXOP DRAM
I/F

Surface Engine

Rendering Engine

Bus
Matrix 1

Bus
Matrix 2

eDRAM
2MB

Interrupt

AHB
Slave

AHB
Master

AHB
Slave

CHAPTER 1 Introduction 15

memory accesses. Although setup unit of the graphics engine relieves the burden

of host system by performing simple transform, clip and culling operations, the

lack of dedicated geometry engine and slow off-chip host interface limit the

performance to less than 1Mvertices/s at 75mW power consumption.

1.3.5 Others

Recently, a hardware rasterization architecture for mobile phones was presented

by Akenine-Moller, et al [5]. The proposed architecture focused on reducing

[Figure 1.3-5 (a): nVidia's SC10]

32-bit Host Bus Interface

MPEG4
Encode

CIF@30fps

MPEG4
Decode

CIF@30fps

JPEG
Decode

3MP

SDIO
1 & 4-bit

Video Input
3MP

SPB

JPEG
Encode

3MP

64-bit
2D Engine

Graphics
Controller

128-bit
3D Engine

Flat Panel
Interface

1280kB 128-bit SRAM

8/16/32-bit Host CPU
+

Sys. Mem

SDIO
Card

Main LCD
(640x480)

Sub LCD

[Figure 1.3-5 (b): Graphics Engine in the SC10]

Host Setup

Raster

Gatekeeper

Data Fetch

Data Write

ALU 3
ALU 2

ALU 1
ALU 0

Vertex Buffer

Texture Cache

Write Buffer

Mem Read

Mem Write

CHAPTER 1 Introduction 16

memory accesses to external memory in rendering of textured triangles. The

inexpensive multi-sampling anti-aliasing scheme, a new texture filtering method

with texture minification and compression, and a scan-line based z-culling scheme

shows the relatively moderate performance in software-only implementation on

commercial cell-phones. Mitsubishi's Z3D core, intended for mobile phones,

utilizes clock gating to achieve the lowest power consumption in spite of a

floating-point geometry engine and 1Mbits embedded SRAM [19]. Also, a 3G

baseband processor with 3D capability [20] and embedded RISC processor with

geometry FPU [21] are trying to realize 3D graphics on mobile platforms.

Standard software graphics APIs for embedded systems have also been released.

One example is OpenGL-ES, which is subset of desktop Open-GL [22].

OpenGL-ES adopts optimizations such as fixed-point operations and redundancy

eliminations for mobile devices with low processing power, while enabling fully

programmable 3D graphics such as vertex and pixel shading

1.4 Architecture Summary of Mobile Multimedia Hardwares

Integration philosophy can categorize the listed mobile multimedia hardwares in

the previous section into two parts ― as peripheral intellectual property (IP) or

[Figure 1.4-1: Categories of Mobile Multimedia Hardware]

Graphics
Processor

MEM I/F

LC
D

 I/
F

Graphics
Memory

LCDHost
CPU

Graphics
IP

Main
Memory

LCD
I/F

System Bus
(On or Off-chip)

Shared
with

Host &
Graphics

(a) As Peripheral (b) As Standalone Processor

CHAPTER 1 Introduction 17

as standalone processor. Figure 1.4-1 shows the conceptual block diagrams of

these categories and Table 1.4-1 summarizes the features of the related works.

Conventional bus architecture and complicated floating-point design is not

suitable for mobile multimedia in terms of power consumption and balanced

performance.

In the conventional works, PC graphics architecture [1-3], which has its roots in

traditional workstation graphics system [16], has been applied to various consumer

electronics and battery-operated devices. Hence, PC graphics can be used to

consider design issues for mobile terminals. The graphics processing unit (GPU)

in the PC system contains large vector floating-point units (FPUs) with special

instructions for graphics operations. The main CPU invokes the GPU using the

system bus interface. However the available system memory bandwidth is not

sufficient to support both the CPU and GPU. In the GPU architecture, several

pixel engines work in parallel to boost performance, fetching data from dedicated

T$ (texture cache) and P$ (pixel cache) memories. The external memory interface

(EMI) merges transactions from cache memories and transfers them to off-chip

memories assigned to graphics processing. The memories are connected to the

EMI through a high-speed crossbar switch. Burst-mode operations are used to

fully utilize the available memory bandwidth. Although each cache element and

[Table 1.4-1: Summary of Mobile Multimedia hardware]

Feature

Integration

Traditional
3D graphics

Multiple
functions

As peripheral As standalone processor

PowerVR's MBX
OpenGL-ES compatible ARM IP
On-chip bus interface
Tile-based rendering

KAIST's RAMP-IV
Full 3D pipeline with texturing
28Mb embedded DRAM
Limited functions (GE)

nVidia's SC10
2D/Camera video processor and
pixel-shading GPU
Off-chip companion interface
Lack of geometry engine

Sony's PSP
Single chip LSI with H.264, 3D
and reconfigurable processor
4MB embedded DRAM
Not low power consumption

CHAPTER 1 Introduction 18

FPU can be power-efficient, the massive structure and high-speed crossbar of the

GPU cannot be applied directly to mobile terminals that lack sufficient computing

power and memory capacity. In addition, modern baseband chips and mobile

platforms such as Qualcomm's MSM chip [20] or TI's OMAP [23] employ

power-efficient ARM processors of integer datapath, and are implemented as

system-on-a-chip (SoC) optimized for battery-operated mobile devices.

This research is proposed as responses to these concerns. It utilizes a simple

ARM coprocessor interface or dedicated buffer connected to an energy-efficient

fixed-point graphics accelerator with specific local memory.

1.5 Contributions of This Research

Since the rasterization and texture mapping require more processing complexities

than the rest of operations in the 3D graphics pipeline, most of graphics

architectures have mainly focused on the rendering pipeline and achieved the

efficient graphics performances. However, since relatively little attention has been

given to 3D geometry operations, now they become the performance barriers in

3D graphics pipeline. Moreover, the previous designs of mobile graphics

architectures seem to be too complicated to be applied to PDAs and cell-phones

or to provide limited functionalities such as lack of geometry engine and

programmability. Especially, the variety of mobile applications requires generality

as well as high performance. Therefore, I proposed and implemented

programmable 3D graphics processor for mobile application. It can fill the gap

between the flexible high performance 3D geometry systems and the low power

wireless platforms with limited system resources. The proposed hardware

architecture has four major features:

(a) Separation of data transfer flow is proposed for efficient hardware and

bandwidth utilization. Different from previous works, the ARM coprocessor

CHAPTER 1 Introduction 19

architecture, that is an instruction extension mechanism of ARM platform, enables

optimized performance throughput while achieving easy programmability.

(b) Full hardware accelerations with stream processing are achieved to boost-up

the sustained performance in compact and fast hardware. Various low power

techniques in both of instruction set and its micro-architecture along with clock

management are implemented for low power consumption. The producer-consumer

locality, that are frequently observed in stream multimedia operations such as 3D

graphics, is also considered in hardware design.

(c) Two level extensions of instruction set architecture are implemented for

programmability and parallel processing. The added multimedia instructions by the

coprocessor architecture is once again extended to more optimized graphics

instructions by dual operations, in which concurrent operations of graphics

coprocessor with main processor are enabled.

(d) Fixed-point SIMD processing is employed for low power consumption and

low cost implementation. It exploits data level parallelism in graphics processing

while keeping the power consumption low.

CHAPTER 2 System Architecture 20

CHAPTER 2

System Architecture

2.1 Model of 3D Graphics Computing

The whole system performance of graphics hardware is dependent not only on

the performance of the individual hardware acceleration blocks but also on the

communication cycles for transferring the graphics data between memory and

processing elements. Figure 2.1-1 summarizes communication bandwidth in

various points of graphics pipeline operating at 5Mvertices/s 100Mpixels/s with

640x480 display in terms of gigabyte (GB) per second [24]. From the figure,

typical mobile graphics requires total bandwidth ranging from 4.8GB/s to

[Figure 2.1-1: Communication Bandwidth in Graphics Pipeline]

Application

GL Command

Geometry

Rasterization

TextureTextureTextureTexture

Fragment

Display

Display
Lists

Frame
Buffer

Texture
Memory
Texture
Memory
Texture
Memory
Texture
Memory

0.00~0.43

0.27~0.55

0.18~0.43

2.00~4.40

1.00

0.06~0.08

0.40~1.60

0.50~4.00

0.00~0.43

15Mcmd/s

5Mvert/s

100Mpix/s

10Msample/s

CHAPTER 2 System Architecture 21

12.5GB/s, however, which is difficult to achieve in conventional 32-bit SDRAM

running at 100MHz. Since much of required bandwidth are consumed in local

traffic among processing elements, concept of stream processing as well as

optimizations arithmetic circuits should be considered to reduce explicit

communication costs. Each context in graphics hardware needs appropriate local

memory for buffering intermediate data, yielding low external memory requests.

So, it can be thought the following model of 3D graphics computing shown in

Figure 2.1-2 from a hardware implementation's point of view.

There are three processing elements with their own local memory application―

(APP), geometry engine (GE) and rendering engine (RE). Although real

implementation may contain dedicated graphics memory chip with hardware

accelerators, all external data including application program, vertex model and

calculated pixel output are conceptually stored in main memory owned by host

processor. However, FIFO memory can be used to interconnect among processing

elements for intermediate data. These intermediate data may be commands or

instructions for next processing elements, or may be temporary output of previous

processing element. In real implementation, direct connections or shared bus can

be employed in place of FIFO memory.

[Figure 2.1-2: Model of 3D Graphics Computing]

APP GE RE

MEM MEM MEM

FIFO FIFO

GL
Prog.

GE
Data

RE
Data

GE
Cmd

RE
Cmd

Main
Memory

Main
Memory

Main
Memory

CHAPTER 2 System Architecture 22

2.2 Separation of Data Transfer Flow

As described in the previous section, the communications of graphics data in

pipeline are crucial concerns in designing hardware, and many implementations

use single or multi-layer bus architectures [15][17-21]. However, I proposed a

mobile graphics processor architecture using coprocessor interface to implement

the model depicted in the figure 2.1-2 [25-26].

In the modern embedded RISC processor such as ARM platform, the

coprocessor is defined as a general mechanism for extension of instruction set

architecture [27] as shown in Figure 2.2-1. ARM coprocessors have their own

private register set and state, and these are controlled by coprocessor instructions

that mirror the ARM's instructions controlling ARM's register set. The ARM has

sole responsibility for control flow, so the coprocessor instructions are concerned

only with data processing and data movement. Following RISC load-store

architectural principles, these categorizes are cleanly separated.

Figure 2.2-2 shows data transfer flow of the proposed mobile graphics processor.

In this data flow, hardware-instruction path and graphics-data path are separated

physically from each other to improve the stream processing within allowed

memory bandwidth. The coprocessor interface, which connects GE to the ARM10

processor, is used for GE instruction transfer. RE is connected to the GE through

the vertex FIFO, which is also used for RE instruction transfer. The system bus

[Figure 2.2-1: Coprocessor Architecture]

ARM
Reg.

Data Movement
(MOV,LDR,STR...)

Data Processing
(ADD, SUB,...)

Control Flow
(B, BL.,...)

Co-Proc.
Data Movement

Co-Proc.
Data Processing

Co-
Proc.
Reg.

ARM Coprocessor

CHAPTER 2 System Architecture 23

interfaces are used only for vertex and pixel data transfers. Since the data cache

of the ARM10 processor can be shared with the GE to store the graphics

primitives such as input-vertex-model data, the GE does not need additional cache

system. The vertex data stored in the data cache of the ARM10 processor are

transferred by vertex-attribute-move instruction of the GE, which is mapped into

the coprocessor register transfer instruction of the ARM10 processor. The output

pixel data are transferred between the graphics cache of the RE and the external

memory through the system bus interface. The separation of instruction and data

paths increases processing parallelism of the hardware blocks and reduces the

required bus arbitration cycles. Therefore, directly coupled design is achieved in

instruction transfer path for easy control of processing elements. And, shared bus

design is used in data transfer path for easy memory management such as unified

memory map architecture and efficient direct memory access (DMA) among

memory space.

The coprocessor architecture shows many benefits over conventional multi-layer

bus architecture in implementing model of 3D graphics computing. Figure 2.2-3

visualizes differences between coprocessor and bus architectures. Conventional bus

[Figure 2.2-2: Data Transfer Flow]

ARM-10

D$

I$ Co-Proc
I/F

Geometry
Engone

Rendering
Engine

Graphics
Cache

MEM
CTRL

Vertex
FIFO

System Bus Graphics Data

Input Vertex Data Output Pixel Data

Vertex Shader
Instructions

Rendering Engine
Instructions

External Memory

Instruction Path: Directly Coupled Design

Data Path:
Shared Bus

Design

CHAPTER 2 System Architecture 24

architecture implies that additional hardware block attached in memory space

should be connected with data port of main processor [28]. This is because

modern embedded RISC processor doesn't have dedicated port for

memory-mapped components. Therefore, as shown in Figure 2.2-3(a) the

command transfers of hardware blocks should use shared bus with main memory

transactions, causing inefficient utilizations of processing elements. In addition, the

multi-layer bus architecture requires complex interconnections including multi-port

arbiters with long and wide global metal wires, yielding high power consumption.

Also, concentrated data transactions may cause heavy bus arbitrations, and main

processor should always consider thread synchronizations in invoking bus-attached

hardware blocks. On the other hand, the coprocessor system depicted in Figure

2.2-3(b) shows the following features.

[Figure 2.2-3: Bus System and Coprocessor System]

ARM GE RE MEM
I D

CMD DATA CMD DATA CMD DATA

Multi-layer
Bus

Should share ARM's data port with
IPs' command ports

(a) Bus System:

ARM GE RE MEM
I D

CMD DATA DATA DATA

Multi-layer
Bus

(b) Coprocessor System:

CMD CMD

Impossible to separate intermediate
command transfers from data transfers

Complete separations of command
and data transfers

CHAPTER 2 System Architecture 25

(a) Direct signal path with short distance in coprocessor interface provides

simple interconnections. Coprocessor shares bypassed instruction port with main

processor. They don't need the bus arbitrations for hardware accesses contrary to

conventional bus-attached hardware accelerators. Therefore, coprocessor interface

can reduce the unwanted stalls between main processor and hardware accelerators,

and thus relevant power consumption.

(b) Since the coprocessor operates in lock step with core pipeline of main

processor, it can avoid a complex synchronization and provide a single thread of

context.

(c) The data cache of main processor can be shared with coprocessor to store

graphics primitives as well.

(d) Since commands of coprocessor are regarded as the extended instruction set

architectures of main processor, easy programmability can be achieved.

2.3 Full Hardware Accelerations with Stream Processing

For high sustained performance, I implemented the graphics processor enabling

full hardware accelerations of graphics pipeline including geometry stage. Figure

2.3-1 shows the block diagram of the proposed programmable graphics processor.

It consists of an ARM10 compatible 32-bit RISC processor with 16kB I/D caches,

a 128-bit programmable fixed-point SIMD vertex shader, a low power rendering

engine and a programmable frequency synthesizer (PFS). The RISC processor

controls the whole system, operating at 200MHz. The vertex shader is

implemented as an ARM10 coprocessor and processes all per-vertex and geometry

operations such as matrix transformation and lighting calculation by executing

vertex programs. The primitive assembly such as clipping and culling is also

performed by the vertex shader in collaboration with the RISC processor. Since

the vertex shader is configured as an ARM10 coprocessor, the single thread of a

CHAPTER 2 System Architecture 26

software context running in the ARM10 processor controls the vertex shader by

the extended coprocessor instructions. The vertex shader operates at 200MHz in

lock with the ARM10 processor, and there is no complex synchronization like bus

arbitration. The rendering engine employs a low power 128-bit SlimShader pixel

engine [29] with 26kB dedicated graphics cache system. The rendering engine is

responsible for the rasterization and the per-pixel operations such as pixel

blending and texture mapping. It is connected to the vertex shader through

internal vertex FIFO that can store 128-bit wide 8-entries encoded instructions.

The rendering engine instruction is composed of transformed vertex coordinates,

texture coordinates and lit vertex color. The operating frequency of the rendering

engine is as low as 50MHz to reduce power consumption. The PFS reduces the

dynamic power consumption of the chip by clock gating and frequency scaling. It

[Figure 2-3-1: Block Diagram of Graphics Processor]

ARM10

I$
16kB

D$
16kB

Coprocessor Interface

Fixed-point
SIMD

Datapath

2kB
Code

Memory

32kB
Display
Memory

Vertex Shader

Vertex FIFO

Rendering Engine

Clock
CTRL

PLL

PFS

External
Memory

Controller

Peripherals

Standard
Asynchronous

SRAM
Interface

External
I/O

Sy
st

em
 B

us
 (8

00
M

B
/s

 @
 2

00
M

H
z)

90b

90b

128b

128b

32b

32b

56b

Triangle Setup
Engine
Pixel

Processor
Texture
Engine
Pixel

Blending

SlimShader

M
EM

 I/
F

12kB Frame
Cache

8kB Depth
Cache

6kB Texture
Cache

Graphics Cache

32b 32b

32b

32b

4 CLK

CHAPTER 2 System Architecture 27

supports four clock domains and clock of each domain can be controlled by

software.

Since the data transfer flow depicted in the figure 2.2-2 was implemented in the

graphics processor, input vertex stream can be fetched to ARM10's data cache

memory, which can be shared as input vertex buffer for the vertex shader, while

the vertex shader itself is operating. Also, output vertex stream can be transferred

to the rendering engine from the vertex shader without stall of cycles by means

of the vertex FIFO. Only final calculated pixel output stream are produced to the

external memory, and all intermediate data transfers are separated from traffic of

the global system bus. Therefore, full hardware accelerations with this stream

processing capability achieves high sustained performance.

2.4 Two Level Extensions of Instruction Set Architecture

For easy programmability and efficient parallel processing in graphics and other

multimedia applications, two level extensions of instruction set architecture is

realized in the implemented graphics processor. Different from the conventional

ARM coprocessor architecture [27][30], the graphics processor has dual operating

states as shown in Figure 2.4-1. The first state is tightly coupled coprocessor

[Figure 2.4-1: Dual Operations]

ARM Inst. 0

ARM Inst. 2

SIMD Inst. 1

SIMD Inst. 3

ARM
Program

Vertex
Program

ARM
Program

ARM10 Vertex
Shader ARM10 Vertex

Shader

(a) TCC State (b) PP State

CHAPTER 2 System Architecture 28

(TCC) state. In this state, the vertex shader in the graphics processor operates as

a normal ARM10 coprocessor. Its instructions are issued by the ARM10 processor

as the extended coprocessor instructions, and they are conditionally executed to

maximize their execution throughput. They do not affect the memory and registers

unless the arithmetic flags (negative, zero, carry out and overflow) of the ARM10

processor satisfy a condition specified in the instructions. In the vertex shader,

SIMD control flags such as arithmetic flags, saturation, overflow and underflow

are updated after execution of every SIMD data processing instructions and can

be moved to program status register (PSR) of the ARM10 processor. The general

SIMD instructions such as arithmetic and movement operations are implemented

in the TCC state, performing clipping and back-face culling operations in 3D

graphics pipeline.

The second state is parallel processor (PP) state [31]. In this state, the vertex

shader behaves like an independent processor and it does not need any control

from the ARM10 processor. The PP state has a separate graphics instruction set

different from the general SIMD instructions of the TCC state. The vertex shader

executes the independent vertex program codes while the ARM10 processor

performs its main application program or enters even into cache miss. Various

user-defined vertex processing operations such as geometry transformation and

lighting calculations can be performed for the current vertex input while next

vertex data is fetched from the ARM10 processor. In order to maintain the

communication protocol of the ARM10 coprocessor interface, the vertex shader

drives coprocessor busy (CPbusy) signal to the ARM10 processor in the PP state,

blocking next coprocessor instruction from the ARM10 processor for

synchronization.

Therefore, I extended the instruction set architecture in two levels for

conventional RISC processor as shown in Figure 2.4-2. The general SIMD

CHAPTER 2 System Architecture 29

instructions are firstly extended by the coprocessor architecture. By this extension,

various multimedia operations such as 2D image processing and digital signal

processing (DSP) applications can be easily programmed in mobile platform.

Table 2.4-1 shows performance of various DSP kernels such as filter and dot

product in the implemented graphics processor, and which achieves comparable

performance with conventional DSP extension [30].

[Table 2.4-1: DSP Performance of Graphics Processor]

DSP Kernel This Work Intel WMX [30]

N sample T tap FIR filter

5
8

NT (T ≤ 48)

9
16

NT (T ≤ 32)

5
8

NT (T ≤ 48)

N sample min or max
N
2

N
2

N dimensional dot product 3
4

N 3
4

N

N dimensional vector sum N N

Add-compare-select (4 sample) 3 3
Absolute difference (4 sample) 3 3

[Figure 2.4-2: Two Level Extensions of ISA]

ARM ARM CP ARM CP

Code
Mem.

ARM ISA
(R2 = R0 ADD R1,
R2 = R0 SUB R1)

ARM ISA
(R2 = R0 ADD R1,
R2 = R0 SUB R1)

General SIMD ISA
(VGR2 = VGR0 ADD VGR1,
VGR2 = VGR0 SFL VGR1)

ARM ISA
(R2 = R0 ADD R1,
R2 = R0 SUB R1)

General SIMD ISA
(VGR2 = VGR0 ADD VGR1,
VGR2 = VGR0 SFL VGR1)

Graphics ISA
(VGR2.xyzw = VGR0 ADD

VGR1.wzyx,
VGR2 = VGR0 DOT VGR1,
VGR2 = VGR0 RSQ VGR1,
VGR2 = VGR0 TFM VGR1)

Coprocessor
Extensions

Dual Operations
Extensions

CHAPTER 2 System Architecture 30

Beyond the first extension, the graphics instructions are secondly extended by the

dual operations from the general SIMD instructions. The vertex shading

instructions that are highly optimized for graphics applications [9] are enabled in

this step by graphics extensions such as write masks and source swizzle. And,

more specific data processing instructions such as reciprocal square root and

matrix transformation are added to basic SIMD architecture. Moreover, enabled

parallelism of the ARM10 processor and the vertex shader by dual operations

gives high throughput to seamless input vertex stream. Figure 2.4-3 illustrates

performance gain by the dual operations in full 3D geometry calculation. The

extended instruction set architecture of the PP state achieves 78% performance

improvement compared with case using only the general SIMD instructions of the

TCC state.

2.5 Fixed-point SIMD Processing

Most of multimedia data such as 3D graphics require real number representation

to support various graphics algorithms. In this work, fixed-point number

representation shown in Figure 2.5-1 is used instead of floating-point number

[Figure 2.4-3: Performance Gain by Dual Operations]

Geometry
Processing

Speed
(Normalized)

Conventioal
Integer

SIMD [30]
TCC Only TCC + PP

78% Increase
by

Parallel Processing

1.0

0.25

1.78

CHAPTER 2 System Architecture 31

format [32]. Simple integer datapath of fixed-point unit can achieve higher clock

frequency while consuming less power than floating-point unit, yielding total

energy reduction. For typical 3D matrix transformation, gate level simulation of

4-stage pipelined 32-bit fixed-point multiplier showed 30% higher maximum

operating frequency than 6-stage pipelined single-precision floating-point

multiplier. In addition, the fixed-point multiplier consumed only 83% power of the

floating-point multiplier at the same operating frequency. Consequently, when the

fixed-point arithmetic is applied to graphics applications, 36% of total energy

consumption can be saved on average (Figure 2.5-2).

To evaluate the accuracy of fixed-point arithmetic in the 3D geometry

operations, the following equations can be used to decide the number of bits for

fractional part, nf, of Qm.n fixed-point number [33], where the 'm' is the number of

bits representing integer part and 'n' is the number of bits representing fractional

part.

[Figure 2.5-1: Fixed-point Number Representation (ex: Q4.4)]

32 22 12 02 12− 22− 32− 42−

7b 6b 5b 4b 3b 2b 1b 0b }1,0{∈ibBit index

Value

sign m-bit integer part n-bit fraction part
fraction point

[Figure 2.5-2: Energy Reduction of Fixed-point Processing]

Fixed-Point
Arithmetic Unit

Power
Consumption

Execution Time

Floating-Point
Arithmetic Unit

17 % Less
Power

24%
Faster

Notes) Measured during transformation operations

CHAPTER 2 System Architecture 32

For transformation,

for lighting,

where 'na' is the number of bits required for securing the accuracy in

transformation and lighting calculation.

Since the screen resolution and color depth of mobile terminals are relatively

small, 32-bit fixed-point system can generate final graphics images with

unnoticeable accuracy loss compared with typical floating-point system. For

example, minimal 14 or 16 bits are enough for fractional part to represent the

vertex data for QVGA (320 x 240) with 16-bit color depth, which is common to

the displays of today's mobile devices.

⎥
⎥

⎤
⎢
⎢

⎡
+++=)1(log3 2 eye tovertex scene of distance

eye from planefar of distance
af nn

98 ++= aaf nnn or

[Figure 2.5-3: Accuracy Comparison of Fixed-point Processing

(Sphere: 5068 Vertices, Horse: 6798 Vertices]

(a) Floating-point (sphere) (b) Fixed-point Q16.16 (sphere)

(c) Floating-point (horse) (d) Fixed-point Q12.20 (horse)

Error in Vertex Positioin
(Typical)

Floating-point : 0.45037
Fixed-point : 0.45034

CHAPTER 2 System Architecture 33

In order to measure the accuracy of fixed-point arithmetic in graphics operations,

the rendered images of 3D objects using software only floating-point graphics is

compared library with the proposed hardware architecture using fixed-point

graphics library. In Figure 2.5-3, lighted, smooth-shaded spheres with different

material properties and 3D character with animations are rendered to show

reliability of the proposed graphics processor. From the results, I can show that

under vertex-level accuracy, the maximum transformed distance between

floating-point and fixed-point systems is less than 0.000025 for Q12.20 fixed-point

format and 0.0002 for Q16.16 fixed-point format.

Many operations in 3D graphics and other multimedia applications shows

data-level parallelism, in that same operations are concurrently and independently

performed with multiple samples such as position coordinates of vertices or color

values of pixels. Before applying SIMD architecture for fixed-point 3D graphics

system, I analyzed various SIMD configurations while executing 3D geometry

Performance Index= Performance 2

Area *Power Consumption

[Figure 2.5-4: Comparison of Various Fixed-point SIMD Configurations]

Processing
Speed

(Vertices/s)

Silicon Cost
(Gate Count)

Power
Consumption

(mW)

32-bit
4 way

32-bit
2 way

64-bit
4 way

64-bit
2 way

128-bit
4 way

128-bit
8 way

256-bit
8 way

Measure
Unit

Performance
Index

Optimal

CHAPTER 2 System Architecture 34

operations. Figure 2.5-4 visualizes the overall performance index for each SIMD

configuration. The performance index was chosen to consider multiple design

constraints such as processing speed (vertices/sec), silicon cost (gate counts), and

power consumption (mW) at the same time. Since, at least 14 or more bits of

fractional part are required to represent fixed-point number in graphics operations,

I assumed that each fixed-point operation in this analysis should be performed in

32-bit fixed-point number. Moreover, OpenGL-ES, the standard of embedded

graphics library, requests to support Q16.16 fixed-point format in number

representation [22]. From the gate-level simulation of each SIMD configuration,

128-bit 4-way fixed-point SIMD configuration was found to achieve the most

optimal performance. When the length of SIMD width is less than 64-bit, the area

cost caused by arithmetic circuits becomes dominant in performance index.

However, as SIMD width is more wider, net interconnection area and relevant

power consumption surpass the increase of processing speed. Therefore, I

implemented that the proposed architecture utilizes 128-bit wide 4-way SIMD

instructions, which allow it to concurrently process up to four 32 bit fixed-point

data elements in a single cycle.

2.6 System Analysis

[Figure 2.6-1: Graphics Processing Element]

Processing
Element

()

Local
Memory

()

Output
FIFO

Graphics
Data

Blocking
Read

Non-blocking
Write

External Memory ()

0M

w

d

Input
FIFO
()0µ

CHAPTER 2 System Architecture 35

In order to analyze various characteristics of the graphics computing model and

the proposed graphics processor mentioned in the previous sections, I adopted the

simplified model of graphics processing elements shown in Figure 2.6-1, where

M0 is the intrinsic computing power of processing element and,

µ0 is the issue efficiency of input FIFO and,

d is the capacity of local memory in processing element and,

w is the provided memory bandwidth between local memory and external

main memory.

Assuming that total 'n ' vertices are divided to batches of size 'b' and each batch

is processed with iterating loop for each vertex at one time independently, the

batch processing time Tb can be represented as,

Tb = C0 +
m0

µ0M0
* b+Td (1)

where C0 and m0 are constants and Td is delayed time by external memory

transfers from local memory. C0 is the sum of initialization and epilogue time

such as matrix, lighting parameter setting. m0 is the cycle time consumed in

performing one loop iteration for single vertex input.

If the capacity of local memory is sufficient, the processing element can operate

while fetching next batch into the local memory simultaneously. Otherwise, the

processing element should wait for finishing execution of current batch in order to

complete the fetch of next batch. Generally, Td is the function of the following

form.

Td = Td(d, b, n, w, T) (2)

where T is total amount of time for processing all vertices.

From the above considerations, Td can be represented as,

CHAPTER 2 System Architecture 36

for low bandwidth

Td =
⎛
⎜
⎝

⎞
⎟
⎠

C1b

w
−

b
n

T *
d − b

d
+

C1b

w
*

b
d

, w≤ nC1

T
(3)

for medium or high bandwidth

Td =
C1b

w
*

b
d

, w≥ nC1
T

(4)

where C1 is constant related with the size of each vertex in batch. The

probability that the processing element decides to fetch next batch in the unused

space of local memory is proportional to d − b
d

, and in this case some portions

of time for fetching next batch can be overlapped with processing time of current

vertex batch. Moreover, if w is high enough, the batch fetching time can be hided

completely. In the case that capacity of local memory is not sufficient, the

processing element should fetch the next batch in the currently used space of

local memory, causing the processing element waiting for finishing graphics

operations.

Finally, total execution time can be computed as,

T = Tb*
n
b

(5)

After substituting equation (3) and (4) into equation (1) and then using equation

(5), I can find that graphics performance (P) , processing speed per second, is

represented as,

P =
n
T
=

2−
b
d

⎛
⎜⎜⎝

⎞
⎟⎟⎠

C0

b
+

m0

µ0M0
+

C1
w

w≤ nC1

T
(6)

P =
n
T
=

1
⎛
⎜⎜⎝

⎞
⎟⎟⎠

C0
b
+

m0

µ0M0
+

C1b

w

w≥ nC1
T

(7)

CHAPTER 2 System Architecture 37

In order to verify the characteristics of above analysis model, I simulated the

proposed graphics processor with changing various parameters such as bandwidth

and memory capacity. The employed input graphics model is the light-shaded

sphere composed of 100k vertices, and each vertex is assumed to be drawn only

once. In the implemented graphics processor, the coprocessor interface with the

ARM10 processor issues graphics commands such as vertex index to the vertex

shader. So, the issue efficiency µ0 is related with data cache hit ratio, which is

about 0.9 roughly in this analysis. Since the rendering engine in the graphics

processor is sufficiently fast, vertex FIFO can be regarded as infinitely capacitive

output queue for the vertex shader. In a typical mobile device, a 32-bit SDRAM

memory running at 100MHz is used as the external main memory I restricted the

provided peak bandwidth to be less than 400MB/s.

Figure 2.6-2 shows the relationship between the capacity of local memory and

the graphics performance when the provided memory bandwidth is 100MB/s. As

the capacity is increased, the performance is also increased. However, the

performance is saturated to peak value if the capacity is more increased. In this

analysis, 16kB capacity achieves 99% of peak performance and 32kB capacity

shows almost maximum performance.

Figure 2.6-3 shows the relationship between the provided memory bandwidth and

the graphics performance. Similar to the capacity of local memory, the

performance is increased as the memory bandwidth is more provided. However,

the slope of performance improvement is more declined in the region of high

bandwidth than in the region of low bandwidth. This is because the performance

is more dependent on the computing power provided by the processing element

and the vertex streaming characterized by the batch size and the memory capacity

than the memory bandwidth if the bandwidth is sufficiently high. In this case,

ideally, the processing element can fetch next vertex from main memory

CHAPTER 2 System Architecture 38

[Figure 2.6-2: Performance versus Capacity of Local Memory]

[Figure 2.6-3: Performance versus Bandwidth]

0 100 200 300 400
0.0M

0.5M

1.0M

1.5M

2.0M

2.5M

3.0M

Bandwidth (MB/s)

Pr
oc

es
si

ng
 S

pe
ed

(V
er

tic
es

/s
)

0 10 20 30 40 50 60 70

Pr
oc

es
si

ng
 S

pe
ed

(V
er

tic
es

/s
)

Capacity of Local Memory (kB)

2.4M

2.5M

2.6M

2.7M

2.8M

2.9M

3.0M

3.1M

3.2M

CHAPTER 2 System Architecture 39

seamlessly while executing current vertex. The simulations recognizes that the

memory bandwidth more than about 70MB/s is sufficient for vertex streaming in

mobile applications.

Figure 2.6-4 shows the relationship between the batch size and the performance

with varying the memory bandwidth. As the batch size is increased, the

performance is also increased due to distributions of initialization and epilogue

time over each vertex in batch. More increase of the batch size, however, causes

the decrease of performance because local memory cannot sufficiently buffer all

vertices in the batch. Since smaller batch size yields lower memory transfer time

(Td) which is more easily hided by processing time (Tb), the optimal batch size

is inversely proportional to the bandwidth as illustrated in the figure.

[Figure 2.6-4: Performance versus Batch Size]

0 200 400 600 800
1.2M

1.4M

1.6M

1.8M

2.0M

2.2M

2.4M

2.6M

2.8M

3.0M

3.2M

Batch Size (Number of Vertices)

Pr
oc

es
si

ng
 S

pe
ed

(V
er

tic
es

/s
)

@ 50MB/s
@ 75MB/s
@ 100MB/s
@ 150MB/s

CHAPTER 2 System Architecture 40

Finally, Figure 2.6-5 shows the relationship between the performance and batch

size with varying the format of vertex data. When using the more smaller format

by geometry compression, the graphics processor provides more higher

performance.

[Figure 2.6-5:Performance versus Batch Size with Various Vertex Format]

Batch Size (Number of Vertices)

Pr
oc

es
si

ng
 S

pe
ed

(V
er

tic
es

/s
)

0 200 400 600 800 1000
1.0M

1.2M

1.4M

1.6M

1.8M

2.0M

2.2M

2.4M

2.6M

2.8M

3.0M

3.2M
24Byte Vertex Format

32Byte Vertex Format

40Byte Vertex Format

48Byte Vertex Format
56Byte Vertex Format
64Byte Vertex Format

CHAPTER 3 Design of Graphics Processor 41

CHAPTER 3

Design of Graphics Processor

3.1 Fixed-point SIMD Vertex Shader

3.1.1 Internal Architecture

Figure 3.1-1 shows the user-programmable fixed-point SIMD vertex shader

implemented in the graphics processor [34][35]. The vertex shader is a 128-bit

4-way SIMD ARM10 coprocessor, and it consists of two parts control and―

datapath. In the control part, there is a 2kB code memory that stores vertex

program codes of graphics instructions. Vertex program control unit (VPCTRL)

issues the graphics instructions without control of the ARM10 processor. The

general SIMD instructions are transferred through the coprocessor interface and

the contents of control register determine its operating state. The two operating

states the TCC state and the PP state share all of the hardware blocks except―

instruction fetch units.

In the datapath part, there is a fixed-point vector unit that is responsible for all

SIMD arithmetic operations such as addition and multiplication. Special function

unit (SFU) is responsible for reciprocal (RCP) and reciprocal square root (RSQ)

operations. Most of the operations are performed in 32-bit fixed-point numbers,

and achieve a single cycle throughput. For streaming graphics processing, the

vertex shader contains multiple register files input vertex registers (VIR), output―

vertex registers (VOR) and general SIMD registers (VGR). The input vertex

CHAPTER 3 Design of Graphics Processor 42

[Figure 3.1-1: Block Diagram of Vertex Shader]

90
b

(I/
D

 b
us

es
)

12
8b

 (c
om

m
an

d
bu

s)

2k
B

C
od

e
M

em
or

y

IN
ST

R
D

EC &
C

TR
L

C
o-

Pr
oc

I/FVP
C

TR
L

Fetch
C

on
tr

ol
R

eg
is

te
r

VP
en VP

en

C
Pb

us
y

G
ra

ph
ic

s
IN

ST
R

SI
M

D
IN

ST
R

St
at

e

IN
ST

R
A

R
M

-1
0

32
kB

D
is

pl
ay

B
uf

fe
r

VI
R

VO
R

 0

VG
R

Sp
ec

ia
l

Fu
nc

tio
n

U
ni

t
(

)

W
rit

e
M

as
k

W
rit

e
M

as
k

op
A

op
B

op
C

A
R

0
A

R
1

SW
Z

VO
R

 1

W
rit

e
M

as
k

VO
R

 2

W
rit

e
M

as
k

Ve
rt

ex
 F

IF
O

Fi
xe

d-
po

in
t

Ve
ct

or
 U

ni
t

x
/1 ,x/1

12
8b

12
8b

12
8b

12
8b

12
8b

32
b

C
on

tr
ol

D
at

ap
at

h

R
en

de
rin

g
En

gi
ne

CHAPTER 3 Design of Graphics Processor 43

register file, used to hold the vertex attributes such as position and normal vector,

is fed into the fixed-point SIMD datapath. The general SIMD register file is used

to store temporary results during vertex program execution. The shaded vertex

output is transformed into one of the output vertex register files. There are three

output vertex register files for caching of vertex data in the primitive assembly

and only one of them is accessible in the vertex program. The vertex shader has

the display list buffer, implemented by 32kB synchronous SRAM as local

memory, to store graphics primitives such as vertex data, reducing the traffic on

external memory I/O. Also, the display list buffer can be shared to hold graphics

constants at the same time for design simplicity of hardware. To enhance the

efficiency of addressing and to avoid the conflicts when accessing display list

buffer, the vertex shader has two integer address registers for indexed display list

buffer reads. In addition, the display list buffer has the following two features.

(a) Auto increment and decrement addressing modes: the address register can be

updated automatically after indexed display list buffer reads, which is useful to

manage the vertex streams.

(b) 8 bit / 16 bit unpack with shuffling of vector components: For geometry

compression, the 8 bit or 16 bit read data from display list buffer can be

sign-extended to the full 32 bit fixed-point numbers, which can be used as the

delta difference between one vertex and the next vertex [36]

The eight-stage single-issue pipeline of the vertex shader is illustrated in Figure

3.1-2 The fetch stage transfers one of the general SIMD instructions and the

graphics instructions from the coprocessor interface and the code memory,

respectively, to the control unit. For programmable shading, operands of the

SRAM display buffer and the SIMD register files are accessed at the same time

in the decode stage. The SRAM address is generated in the early stage of

pipeline, the issue stage. In the execute stage, there are three separated pipelines:

CHAPTER 3 Design of Graphics Processor 44

SIMD arithmetic-and-logic (ALU) pipeline, SIMD multiply (MUL) pipeline and

SFU pipeline. By using 4-way 32-bit integer multipliers with integer shifter arrays

for fixed-point conversion, single-cycle throughput for fixed-point

multiply-and-accumulate (MAC) operations can be achieved. To reduce the design

complexity, register-forwarding logic between pipeline stages is used only in the

general SIMD register file.

3.1.2 Instruction Set Architecture

In the graphics processor, the two separate instruction sets the general SIMD―

instruction set for the TCC state and the graphics instruction set for the PP state

are implemented. The instruction set in the TCC state contains all data processing

and movement instructions for the vertex shader. These instructions can accelerate

various multimedia functions such as MPEG4 video besides 3D graphics. In the

PP state, the instruction set consists of 20 operations, which are the modified

subset of today's programmable vertex engine [37]. All these instructions utilize

[Figure 3.1-2 Pipeline Structure of Vertex Shader]

General SIMD INSTR Fetch Graphics INSTR Fetch

Initial INSTR
Decoding

Display Buf. ADDR
Generation

SIMD Reg. Index
Generation

Final INSTR
Decoding

Display Buf. (SRAM)
Read

SIMD Reg. Access
Forwarding

4-way 32b Integer ALU 4-way 32x16 Integer
MUL CLZ

Start
DIV/SQRT

Continue
DIV/SQRT

CPA

Pipeline Register (E2-E3)

Pipeline Register (E3-E4)

Pipeline Register (E4-W)

4-way 32x16 Integer
MUL

Carry Propa. Adder
(CPA) Array for Low 32b

CPA for High 32b

SHIFT Array

All Register Files Writeback

SIMD ALU Pipeline SIMD MUL Pipeline SFU Pipeline

F

I

D

E1

E2

E3

E4

W

CHAPTER 3 Design of Graphics Processor 45

the fixed-point arithmetic except integer shift instructions for index calculations.

Table 3.1-1 shows the instruction set of vertex program that can be executed in

the PP state. In the programmer's view, the PP state instructions are the subset of

the TCC state instructions with graphics extensions such as source swizzling and

write-masks. That is, one input vector operand can be swizzled arbitrarily in the

SIMD datapath and all the output writes can be controlled by component-wise

write mask bits. Moreover, in the PP state, there are more options for input and

output operands such as VIR, VOR and display buffer memory, while the TCC

state allows only VGR for input and output operands.

[Table 3.1-1: PP State Instructions for Vertex Program]

Opcode Full Name Description Latency Throughput
MUL Multiply Vector Vector→ 4 1
MAD Multiply and Add Vector Vector→ 4 1
DP3 3-term Dot Product Vector Replicated→

Scalar 5 2
DP4 4-term Dot Product Vector Replicated→

Scalar 5 2
TRFM Transform Vector Vector→ 7 4
ADD Addition Vector Vector→ 1 1
SUB Subtraction Vector Vector→ 1 1
MOV Move Vector Vector→ 1 1
RCP Reciprocal Scalar Replicated→

Scalar 6 3
RSQ Reciprocal Square Root Scalar Replicated→

Scalar 8 5
MIN Minimum Vector Vector→ 1 1
MAX Maximum Vector Vector→ 1 1
SLT Set Less Than Vector Vector→ 1 1
SGE Set Greater Than or Equal Vector Vector→ 1 1
SEQ Set Equal Vector Vector→ 1 1
LSL Logical Shift Left Vector Integer Vector→ 1 1
ASR Arithmetic Shift Right Vector Integer Vector→ 1 1
ZERO Set Zero Vector 1 1
ARL Address Register Load Vector Integer Scalar→ 2 2
END Vertex Program End Miscellaneous 1 1

CHAPTER 3 Design of Graphics Processor 46

In the TCC state, the control flow instructions such as branch and return are

managed by the main processor and the vertex shader provides only the extended

SIMD arithmetic instructions. However all the vertex shader instructions can be

conditionally executed like conventional ARM instructions. When implementing

the fixed function pipeline of graphics library such as OpenGL which is

controlled by global states, the state checking, vertex shading path selection,

homogeneous clip space operations and back face culling are handled in the TCC

state. The remaining code segments for actual vertex shading operations can be

executed without state checking. These operations are carried out in the vertex

program of the PP state, which supports the vertex transform paths without

branching for simplicity and efficiency of hardware architecture. Even if the

control flow instructions are not supported in the PP state, simple if/then/else

statement is still possible through SLT, SGE and SEQ instructions.

To save the system resources, the datapath is made simple and efficient without

complex hardware blocks. All arithmetic operations including RCP and RSQ are

executed on the fixed-point numbers that can have any precisions, and only low

power integer arithmetic units are used. They are also fully pipelined, and there is

a bypass logic to forward the data to the different stage of pipeline of correct

instructions. And, I removed the complex functions such as the logarithmic,

exponential and specular power functions, and rather the table look-up is used for

these functions. The integer shift instructions of fixed-point numbers are added in

order to extract bit fields for index calculations in the lookup table. After shift

operations of vertex specific index, the ARL instruction can allow an offset into

the lookup table.

The following vertex program (Figure 3.1-3) implements the vertex

transformation and full Phong shading. It uses OpenGL lighting equations with

assumption of infinite light and viewpoint positions. To calculate the specular

CHAPTER 3 Design of Graphics Processor 47

[Figure: 3.1-3: Vertex Program Code for Transformation and Lighting]

Vertex Transformation and OpenGLLighting## c[0-3] = modelview matrix (column-wise)# c[4-7] = modelview inverse transpose (column-wise)# c[8-11] = modelview projection matrix (column-wise)# c[16] = light position# c[17] = blinn halfway vector# c[18] = precomputed specular light * specular mat.# c[19] = precomputed diffuse light * diffuse mat.# c[20] = precomputed ambientlight * ambient mat.# c[32-47] = 64 entries lookup table for specular power (column-wise)# c[48] = 16th, 32th, 48th and 64th entries of lookup table# c[49].x = fraction bit length of fixed-point format# c[49].y = fraction bit length - 2# c[49].z = fraction bit length - 6# c[49].w = fraction bit length + 4# c[50] = (0, 1, 2, 3) in integer format
Vertex transformation to eye spaceTRFM VGR0.xyz, VIR[OPOS], c[0];
Normal vector transform to eye spaceTRFM VGR1.xyz, VIR[NRML], c[4];
Vertex transformation to clip spaceTRFM VOR[HPOS], VIR[OPOS], c[8];
Compute normalized light directionSUB VGR0.xyz, VGR0, c[16];DP3 VGR0.w, VGR0, VGR0;RSQ VGR0.w, VGR0.w;MUL VGR0.xyz, VGR0, VGR0.w;
Compute N.L and N.HDP3 VGR2, VGR1, VGR0;DP3 VGR3, VGR1, c[17];
Index calculation of lookup table for specular power function
ASR VGR4, VGR3, c[49].y;
ASR VGR5, VGR3, c[49].z;
LSL VGR6, VGR5, c[49].z;
SUB VGR6, VGR3, VGR6;
LSL VGR5, VGR5, c[49].x;
LSL VGR7, VGR4, c[49].w;
SUB VGR5, VGR5, VGR7;

table look-up
ARL A0.x, VGR5.x;
SEQ VGR7.x, VGR4, c[50].x;
SEQ VGR7.y, VGR4, c[50].y;
SEQ VGR7.z, VGR4, c[50].z;
SEQ VGR7.w, VGR4, c[50].w;
DP4 VGR4, VGR7, c[A0.x+32];
DP4 VGR5, VGR7, c[A0.x+33];

Compute specular power using interpolation
SUB VGR5, VGR5, VGR4
MAD VGR3, VGR5, VGR6, VGR4;

Compute light color values
MUL VGR5.xyz, VGR3, c[18];
MUL VGR4.xyz, VGR2, c[19];
ADD VGR5.xyz, VGR4, VGR5
ADD VOR[COL0].xyz, VGR5, c[20];

texture coordinate
MOV VOR[TEX0], VIR[TEX0
END

CHAPTER 3 Design of Graphics Processor 48

power function, I used the lookup table of 64 entries which store the specular

coefficients for given shininess value. After calculating dot product of normal

vector and the Blinn halfway vector, I used the integer shift instructions for offset

values. After the rearrangements of the instructions and the eliminations of false

dependencies, the vertex shader running at 200MHz can process these vertices at

a rate of 3.6M vertices/sec including view frustum clip check, perspective divide

and viewport transform.

3.1.3 SIMD Datapath Design

SIMD datapath of the vertex shader consists of SIMD ALU (arithmetic and logic

unit), SIMD multiply engine, SFU (special function unit) and SIMD reigster files.

Figure 3.1-4 shows the details of SIMD datapath with forwarding paths. Some of

operations such as TRFM, DP3, DP4, RSQ and RCP consumes multi-cycles for

completions, and decoder unit and finite state machine in the control part

generates all necessary signals. SIMD control register bank (SCR) contains

informations about processor states and arithmetic flags.

Figure 3.1-5(a) shows the SIMD ALU in the SIMD datapath. It can calculate all

fixed-point arithmetic and logic operations including byte shuffle, data packing

and operand alignment using only the integer adder and shifter. Although

fixed-point arithmetic can provide enough performance in mobile 3D graphics, I

designed efficient software floating-point emulations for more wider dynamic

range by adding two special instructions controlled ADD/SUB (CAS) and―

controlled logical shift (CLS). Control flow instructions such as if-then-else are

frequently used in the programming of software floating-point arithmetic routines

on conventional integer RISC processors. However, these control flow instructions

decrease processing parallelism in SIMD datapath and require many operating

cycles. The CAS and CLS instructions change the control flow instructions to

CHAPTER 3 Design of Graphics Processor 49

[Figure 3.1-4: Detail Block Diagram of SIMD Datapath]

VG
R

B
A

N
K

op
A

op
B

op
C

w
bV

gr

VI
R

B
A

N
K

op
w

b

VO
R

B
A

N
K

op
w

b

SC
R

B
A

N
K

w
bM

cr
w

bA
sr

w
bF

sr
w

bP
sr

op
Sc

r

C
A

SR
FR

LE
N

D
ZCD
ZE

si
m

dD
IB

us
(fr

om
 D

is
pl

ay
 M

em
or

y)

Sw
iz

zl
e

E1
si

m
d

O
pB

B
us

Si
m

dM
ul

tip
ly

Sh
uf

fle

A
lig

n

Pa
ck

ALU

C
LZ

Sh
ift

er

E1
si

m
dO

pA
B

us

E1
si

m
dO

pC
B

us
E1

op
Sc

rB
us

E1
ca

sr
Fl

ag

E1
dz

eF
la

g
E1

dz
cF

la
g

A
R

eg
0

A
R

eg
1

dm
A

R
eg

dm
A

In
c

ADD

im
m

cl
ip

R
eg

E1
as

rW
bB

us

cp
D

O
B

us

SF
U

Pi
pe

lin
e

E1
si

m
dA

lu
O

ut
B

us dm
A

B
us

(to
 D

is
pl

ay
 M

em
or

y)

fo
r A

R
L

fo
r V

A
R

L
fo

r V
R

ST
R

, V
SA

VE

dm
R

d
A

lig
n

cp
D

IB
us

E3
m

ul
O

ut
B

us
E4

m
ul

O
ut

B
us

E4
sf

u
O

ut
B

us

W
si

m
d

W
bB

us

E1
si

m
dA

lu
B

us
E2

si
m

dW
bB

us
E3

si
m

dW
bB

us
E4

si
m

dW
bB

us
W

si
m

dW
bB

us

E1
as

rW
bB

us

Js
im

dD
at

ap
at

hD
Js

im
dD

at
ap

at
hE

1
Js

im
dD

at
ap

at
hE

2
Js

im
dD

at
ap

at
hE

3
Js

im
dD

at
ap

at
hE

4

CHAPTER 3 Design of Graphics Processor 50

single cycle SIMD arithmetic operations as shown in Figure 3.1-5(b). After

negative flag in arithmetic status register is updated by previous instructions such

as SUB, the CAS instruction can be made a single ADD instruction or SUB

instruction. The CLS instruction can also made be a single left shift instruction or

right shift instruction. These instructions can reduce the unnecessary comparison

operations in exponent alignment and normalization of floating-point arithmetic

With the floating-point emulation, the graphics processor shows 80MFLOPS peak

floating-point performance at 200MHz operating frequency.

[Figure 3.1-5: SIMD ALU]

Shuffle

Align

Pack

A
LU

CLZ

Shifter

Status Reg.
(N,Z,C,V)

opA

opB

opC shAmt

aluOut

aluCode
= {aluType, N}

shCode
= {shType, N}

(a) Block Diagram

SUB

N == 0

ADD SUB

Update Negative (N) Flag

Yes
No

CAS

SUB

N == 0

Right shift Left shift

Yes
No

CLS

Previous Arithmetic
Instruction

Update Negative (N) Flag

(b) Two Instructions (CAS,CLS) for Floating-point Emulation

clk

CHAPTER 3 Design of Graphics Processor 51

[Figure 3.1-6: SIMD Multiply]

32
x1

6
B

oo
th

M
ul

tip
lie

r
(1

st
 s

ta
ge

)

32
x1

6
B

oo
th

M
ul

tip
lie

r
(2

nd
 s

ta
ge

)

U
np

ac
k

Sh
ift

er

32
-b

it
C

ar
ry

Sa
ve

A
dd

er

32
-b

it
C

ar
ry

Pr
op

a.
A

dd
er

32
-b

it
C

ar
ry

Sa
ve

A
dd

er

32
-b

it
C

ar
ry

Pr
op

a.
A

dd
er

Pa
ck

Sh
ift

er

A
cc

um
ul

at
e<

32
>

m
ul

O
pA

<3
2>

m
ul

O
pB

<3
2>

su
m

H
i

<3
2>

co
H

i
<3

2>

su
m

Lo
<3

2>

co
Lo

<3
2>

ac
cu

m
Lo

<3
2>

E4
m

ul
O

ut
<3

2> ca
rr

yO
ut

ca
rr

yI
n

ac
cu

m
H

i<
32

>W
m

ul
O

ut
<3

2>

Fi
xe

d-
po

in
t

ou
tp

ut

C
on

ve
rt

 3
2-

bi
t f

ix
ed

-p
oi

nt
to

 6
4-

bi
t i

nt
eg

er

C
on

ve
rt

 6
4-

bi
t i

nt
eg

er
to

 3
2-

bi
t f

ix
ed

-p
oi

nt

B
yp

as
s

of
 L

ow
 3

2-
bi

t
B

yp
as

s
of

 H
ig

h
32

-b
it

E1
 s

ta
ge

E2
 s

ta
ge

E3
 s

ta
ge

E4
 s

ta
ge

(a
) M

at
rix

 T
ra

ns
fo

rm
at

io
n

(T
R

FM
)

(c
) H

ar
dw

ar
e

A
rc

hi
te

ct
ur

e
of

 S
in

gl
e

Fi
xe

d-
po

in
t M

ul
tip

lie
r U

ni
t

m
4

m
5

m
6

m
7

m
8

m
9

m
10

m
11

m
12

m
13

m
14

m
15

V
 .x

V
 .y

V
 .z

V
.w

m
0

m
1

m
2

m
3

m
4

m
5

m
6

m
7

m
12

m
13

m
14

m
15

m
8

m
9

m
10

m
11

m
0

m
1

m
2

m
3

br
oa

dc
as

te
d

ve
ct

or
 e

le
m

en
ts

V.
x

V.
x

V.
x

V.
x

V.
y

V.
y

V.
y

V.
y

V
.w

V
.w

V
.w

V
.w

V
.z

V
.z

V
.z

V
.z

M
U

L
x

M
A

C
 y

M
A

C
 z

M
A

C
 w

(b
) I

nt
er

na
l B

yp
as

sE
4

E
3

E
2

E
1

E
4

E
3

E
2

E
1

E
4

E
3

E
2

E
1

E
4

E
3

E
2

E
1

1c
lk

D
I

F

W

M
U

L
 x

M
A

C
 y

M
A

C
 z

M
A

C
 w

4
cy

cl
e

th
ro

ug
hp

ut

by
pa

ss
 o

f
in

te
rm

ed
ia

te
 lo

w
 3

2
bi

t v
al

ue
s

by
pa

ss
 o

f
in

te
rm

ed
ia

te
 h

ig
h

32
 b

it
va

lu
es

CHAPTER 3 Design of Graphics Processor 52

Since multiplication-equivalent instructions spend most of time in graphics

operations, the throughput of fixed-point MAC operations is designed as a single

cycle. In addition, fast 4-cycle matrix transformation (TRFM) is implemented as

shown in Figure 3.1-6. By broadcasting vector elements of input vertex, TRFM

can be calculated by the first MUL and the following three MAC operations.

However, fixed-point MUL and MAC operations require two cycle integer

multiplications and two cycle integer additions, leading to 4-cycle latency. To

resolve data dependency between theses MUL and MAC operations, it is allowed

that intermediate value of the integer multipliers can be bypassed to accumulated

input of the integer adders in the SIMD multiply engine (Figure 3.1-6(c)). By this

scheme, the graphics processor shows 50Mvertices/s peak graphics performance

for parallel projection at 200MHz.

SFU (Figure 3.1-7) calculates the square root and division by using 32-bit

radix-4 combined integer division and square root unit. It calculates fixed-point

result from fixed-point input number. Integer shifter in SFU pre-scales the input

fixed-point number to intermediate 64-bit integer format before actual division and

[Figure 3.1-7: SFU]

Count
Leading

Zero

Integer
Shifter

Radix-4
Integer

DIV
SQRT

Carry
Propa.
Adder

IN

1.0
in Qm.n

For Qm.n Fixed-point Format

Pre-scale
Value

Normalized Input

Quotient

Remainder

Scale up fixed-point dividend to 64b space

OP Pre-scale Value

RCP

RSQ

of Leading Zero

n/2 + # of Leading Zero

OUT

CHAPTER 3 Design of Graphics Processor 53

square root operations. Since output fixed-point number is 32-bit value, only MSB

32-bit of the intermediate 64-bit integer value is calculated after

counting-leading-zero (CLZ) operation.

3.1.4 Operation Model

Figure 3.1-8 illustrates operation model of the vertex shader in geometry

pipeline. General SIMD integer and fixed-point instructions of the TCC state can

be used to program general applications such as artificial intelligence (AI) part of

graphics game engine. The graphics parameters such as model-view matrix,

camera movement and lighting information can be generated at this step. The

efficient floating-point emulation enables calculations requiring more wide

dynamic range while consuming less silicon area. Since the display buffer can be

readable and writable in the TCC state, the vertex shader can move the vertex

[Figure 3.1-8: Operation Model]

ARM SIMD
Datapath

VGR

CP
I/F

Display
Buffer

VIR

VOR

SIMD
Datapath

VGR

Display
Buffer

ARM SIMD
Datapath VGRCP

I/F

VOR0 VOR1 VOR2

Vertex FIFO

General
Appl.

(Game AI...)

Vertex
Shading
(TnL...)

Clipping

To Rendering Engine

General Integer and
Fixed-point Instruction,

SW Floating-point
emulation

(TCC state)

Fixed-point
Graphics Instruction

(PP state)

General Instruction
& TCLIP

(TCC state)

Code
Memory

CHAPTER 3 Design of Graphics Processor 54

model data in the display buffer to VIR for vertex shading while writing graphics

parameters. After that, vertex shading operations exampled in the figure 3.1-3 can

be performed by using vertex program instructions of the PP state. Vertex

program call instruction in the TCC state changes the processor state and make

the vertex shader issue graphics instructions stored in the code memory. After

finishing the vertex program, the processor state of vertex shader is automatically

changed back to the TCC state. At this time, the vertex shader performs primitive

assembly such as polygon clipping. The TCC state contains a special instruction

TCLIP for accelerating polygon clipping by testing whether a given vertex is―

inside the view frustum in clip coordinates (see the figure 1.2-1). A point inside

the frustum in clip coordinates satisfies the following conditions [38].

−wc≤ xc≤+ wc

−wc≤ yc≤+ wc for wc≥ 0

 0≤ zc≤+ wc

+ wc≤ xc≤− wc

+ wc≤ yc≤− wc for wc < 0

+ wc≤ zc≤ 0

The TCLIP instruction, which is mapped in ARM10's coprocessor register

transfer instruction, generates a clip code into one of ARM10's registers from a

input vertex stored in one of the general SIMD registers as shown in Figure

3.1-9(a). If the clip code is zero, the given vertex is inside the view frustum.

Although the TCLIP instruction deals with the case of positive w only, ARM's

conditional execution mechanism allows the clip code to be calculated in the case

of negative w as well (Figure 3.1-9(b)). In the operation model, the transformed

and lit vertex output is stored in one of there VORs after vertex shading. In the

clip stage, the vertex shader first inspects the clip code of this vertex output, and

then transfers it to the rendering engine through the vertex FIFO by using

conditional execution mechanism only if the vertex is inside. Otherwise,

interpolation of vertex across clip boundary of view frustum indicated by the clip

code is performed before transferring the vertex output to the rendering engine.

CHAPTER 3 Design of Graphics Processor 55

3.2 Rendering Engine

3.2.1 Internal Architecture

[Figure 3.2-1: Internal Architecture of Rendering Engine]

Triangle Setup Engine
(TSE)

Interpol.

Depth
Compare

Texture
Engine

Blending

Pixel Processor (PXP)

A
lig

ne
rTM_req

Vertex FIFOSet-up
Operations Xformed and Lit Polygon

8KB Depth
Cache

3KB Texture
Cache 0

3KB Texture
Cache 1

even

odd

12KB Frame
Cache

MEM
I/F

System
Bus

[Figure 3.1-9(a): TCLIP Instruction]

[Figure 3.1-9(b): Clip Code Calculation]

VGR1: transformed and lit vertex output (x,y,z,w)# R0: clip code
VZERO VGR0; // VGR0 = (0,0,0,0)VSUB VGR2, VGR0, VGR1; // VGR2 = (-x,-y,-z,-w)
#ARM's CPSR = w part of SIMD CPSRTEXTC.w R15;
TCLIPLE R0, VGR1; // in the case of positive wTCLIPGT R0, VGR2; // in the case of negative w

TCLIP:
Inside or not?

View
Frustum

1:0?wx −≥
1:0?wx +≤
1:0?wy −≥
1:0?wy +≤
1:0?0≥z
1:0?wz +≤

5th Bit

4th Bit

3th Bit

2th Bit

1th Bit

0th Bit

ARM
Register

SIMD
Register

x
y
z
w

CHAPTER 3 Design of Graphics Processor 56

Figure 3.2-1 shows internal architecture of the rendering engine. It consists of a

triangle setup engine (TSE), a pixel processor (PXP) and a graphics cache system.

The TSE accelerates setup operations by sorting positions of the input triangles,

and balances the 3D graphics pipeline between the rendering engine and the

vertex shader. The PXP performs the main rendering operations such as shading,

depth comparison, texture mapping and pixel blending.

The 26kB graphics cache contains frame, depth and texture caches, and stores

frequently accessed pixel data. The frame and depth caches are direct-mapped

caches in screen coordinates with two-dimensional array as illustrated in Figure

3.2-2, and show 97.9% and 98.8% average cache hit ratio for frame and depth

buffer operations, respectively. In order to prevent conflicts in bilinear MIPMAP

filtering, the texture cache are composed of two separate direct-mapped caches

having the same screen-mapped coordinates with the frame and depth caches.

[Figure 3.2-2: 2D-screen Mapping in Graphics Cache]

4x4 Block

16
Blocks

16
Blocks

Cache

512x512
Screen

2D Direct Mapped

< Cache Mapping >

< X address >

< Y address >

xtag (3) Block address (4) Offset (2)

012568

ytag (3) Block address (4) Offset (2)

012568

CHAPTER 3 Design of Graphics Processor 57

Since the texture cache has separate memory for even and odd mip-level, it works

effectively like as 2-way set-associative cache, achieving up to 96.5% hit ratio

and average 20% power reduction compared to single direct-mapped cache.

The data access pattern of frame and depth caches are strongly related with

rasterization order of the rendering engine in 2D screen, and the cache capacity in

this work is relatively higher than in PC graphics system. Therefore, the hit ratio

of direct mapped frame and depth caches is similar to associate caches. However,

the well-known cache power model, CACTI [39], tells that the power

consumption of two-associate cache is 50% higher than one of direct mapped

cache in cache hit state. Therefore, the direct mapped cache can be more

beneficial in design of depth and frame caches. But, in the case of texture cache

design, the two-associate caches or separate direct-mapped caches show two-times

smaller miss ratio than conventional direct mapped cache in bilinear MIPMAP

texture filtering [40].

3.2.2 Instruction Set and Vertex FIFO

The rendering engine has its own instruction set to control the datapath and

execute rendering program. Table 3.2-1 briefs the rendering engine instructions.

Since the cycle consumed in transferring vertex data from geometry stage can be

performance bottleneck in full graphics pipeline, the rendering engine is optimized

to process all necessary information of vertex at every rendering cycle by RDAT

instruction. It contains screen coordinates (X, Y), 16-bit screen depth (Z), color (R,

G, B, A), and homogeneous texture coordinates (u, v, 1/w). Each color component

is represented by 8-bit integer to support true-color rendering with alpha-blending.

And each screen coordinate (X, Y) contains 9-bit integer to cover 512x512 screen

resolution. The homogeneous texture coordinate is represented as 16-bit

fixed-point format (8-bit integer + 8-bit fraction) to preserve necessary dynamic

CHAPTER 3 Design of Graphics Processor 58

Table 3.2-1: Rendering Engine Instructions

Type Mnemonic Description

Rendering RDAT TRI POS W U V
X Y Z A R G B

Fetch vertex data
TRI: Strip support
00: Intermediate vertex
01: End vertex
POS: Reduce bandwidth
0100: 1st vertex
0010: 2nd vertex
0001: 3rd vertex
W[16b]=1/W
DATA0[16b,16b]=u:v
DATA1[9b:9b:6b,8b]=X:Y:A:R
DATA2[8b:8b:16b]=G:B:Z
(A is valid only if TRI=01)

Texture TMOD ADDR BLND FILT
ID SIZE

Set texture mapping mode
BLND[4b]: Blending mode
0001: Decal
0010: Modulate
FILT[4b]: Filtering method
0001: Point sampling
0010: Bilinear filtering
ID[8b]: Texture ID
LOD[4b]: LOD Bias
0xxx: Normal mode
1AAA: Set LOD to A
SIZE[12b]: Texture Size

Cache

CIVLD CACHE
Set cache tag information invalid
Target[4b]: Target cache
0001: Depth cache
0010: Frame cache
0100: Texture cache

CFLUSH CACHE
Flush cache contents to main memory
Target[4b]: Target cache
0001: Depth cache
0010: Frame cache
0100: Texture cache

MBASE CACHE ADDR

Set base address for graphics memory
Target[4b]: Target cache
0001: Depth cache
0010: Frame cache
0100: Texture cache
ADDR[32b]: Base address

CHAPTER 3 Design of Graphics Processor 59

range and precision for texture calculation. The rendering engine also contains

instructions for graphics cache management. Since depth buffer, frame buffer and

texture memory are located in memory space of the ARM10 host processor,

additional memory management are not required for the rendering engine. Instead,

MBASE instruction is designed for setting base address of each graphics memory

in internal register of the rendering engine, allowing address translations to be

performed inside the rendering engine. And, instructions making caches invalid

and flushing frame cache contents to frame buffer are added for initialization and

finalization of rendering operations, respectively.

The vertex FIFO is implemented in the vertex shader to buffering vertex data

between the vertex shader and the rendering engine as shown in Figure 3.2-3.

Since the calculated vertex data is stored in VOR of the vertex shader, the

ARM10 processor encodes this vertex data to the rendering engine instruction

such as RDAT in collaboration with the vertex shader of the TCC state. Then, the

ARM10 processor pushes it to the vertex FIFO by using queue insertion

instruction mapped to coprocessor data processing instruction of the TCC state,

which allows the ARM10 processor to continue executions of next instructions

even in the case of queue full state. After that, the rendering engine can pop its

instructions from the vertex FIFO through its fetch logic. If there is no more

[Figure 3.2-3: Vertex FIFO]

ARM10
SIMD

Datapath
CP
I/F

Entry 0

Entry 1

Entry 7

Vertex FIFO

Rendering
Engine

Encode calculated vertex to
RE instruction

Push: Mapped
in TCC state

Pop: Fetch
in RE

VOR

Fetch

Vertex Shader

CHAPTER 3 Design of Graphics Processor 60

instruction in the vertex FIFO, the rendering engine waits for new instruction and

stops its operations.

3.3 Low Power Techniques

The implemented graphics processor controls its dynamic power consumption at

both of micro-level and macro-level.

3.3.1 Instruction-level Power Management

For micro-level power management of the vertex shader, it implements

instruction-level power management as shown in Figure 3.3-1. By the definition

of the ARM10 coprocessor interface, the ARM10 processor must drive

coprocessor instruction valid (CPINSTV) signal to the vertex shader only when

the current instruction issued from the ARM10 processor is the valid vertex

shader instruction. Using CPINSTV, the clock signals of the SIMD register files

can be gated off when the write operations of the register files are not required.

The read operations of the register files are still possible in the clock-off state.

The write operations of the register files are performed in the writeback stage,

and CPINSTV is valid in boundary between the issue and the decode stage of the

vertex shader pipeline. Nevertheless, the vertex shader can operate reliably

because pipeline registers hold register writeback values before writeback

operations, and the register forwarding logic bypasses these valuesto correct input

ports of arithmetic units. CPINSTV also reduces the power dissipated in the

datapath of SIMD arithmetic units by eliminating the unnecessary signal

transitions. Therefore, the coprocessor architecture shows fine-grained power

management on an instruction-by-instruction basis. In the vertex shader, since the

SIMD register files and datapath consume about 80% of power, about 47%

activation ratio in calculating full 3D geometry operations achieves up to 43%

power reduction.

CHAPTER 3 Design of Graphics Processor 61

[Figure: 3.3-1: Instruction-wise Power Management]

VGR

VIR

VOR 0

VOR 1

VOR 2

0

ARM-10

C
o-

Pr
oc

I/F R
eg

.CPINSTV

Main Clock

Enable

VPCTRL

 Fixed-
point

 Datapath

op
A

op
B

op
C

Latch
D

E
Q

Latch
D

E
Q

Latch
D

E
Q

1

Clock-gating of register files

Operand isolations

Vertex Shader

Active high @
the co-processor
is called

Clock
Source

PP
TCC

PP

TCC

PFS

(b) Hardware Implementation

E1 E2 E3 E4 WDIF

E M WDIF

E M WDIF

E M WDIF

E M WDIF

E1 E2 E3 E4 WDIF

Instruction: An

Instruction: Vn+1

Instruction: An+2

Instruction: Vn+3

Instruction: Vn+1

Instruction: Vn+3

1clk

Instruction Valid
Signal

Driven in early stage
of pipeline

Clock is not supplied to SIMD arithmetic
units in datapath

Pipeline of main processor

Pipeline of vertex shader

FetchF: IssueI: DecodeD:
ExecuteE: MemoryM: WritebackW:

ARM instructionsAn:
Vertex shader instructionsVn:

Clock

(a) Clock-gating in Pipeline Stages

CHAPTER 3 Design of Graphics Processor 62

3.3.2 Pixel-level Clock-gating

For micro-level power management of the rendering engine, it implements

pixel-level clock gating. To reduce power consumption, the PXP in the rendering

engine allows clock gating, which uses depth-compare results generated in early

stage of rendering pipeline as shown in Figure 3.3-2. If a new pixel to be drawn

is already covered by the pixels near from the viewpoint, the PXP does not need

to process further. To use this property, the depth-compare unit is put into the

earlier pipeline stage and the clock signals of the texture and blending units are

gated-off to prevent unnecessary shading and texturing. It also reduces the power

consumption of the graphics cache system by eliminating the unnecessary requests

to each cache. For typical graphics applications that have the depth complexity of

two, the pixel-level clock gating of the rendering engine shows average 25%

power reduction [29].

[Figure 3.3-2: Pixel-level Clock-gating]

Depth
Interpolation

Unit

Color / Coord.
Interpolation

Unit

Depth Cache

Compare

Gating
ControlREclk

New
Depth

Old
Depth

Write
Mask

Next
Pipeline

Stage

#1 #2
x

z

y

#1> #2

Unnecessary
Operations

CHAPTER 3 Design of Graphics Processor 63

3.3.3 Programmable Frequency Synthesizer

For macro-level power management, the graphics processor contains the

programmable frequency synthesizer (PFS) as shown in Figure 3.3-3. Revised

from the previous implementation that supported the only abrupt frequency change

(2x, 1x, 0.5x) [13], this PFS can continuously and adaptively tune the target

frequency with PLL-type frequency synthesizer. Once the operation mode is

selected by OP_MODE (FAST / NORMAL / SLOW), FREQ_CTRL sets the

target frequency adaptively. The frequency in FAST mode can vary from 32MHz

to 271MHz with 1MHz step, NORMAL from 16MHz to 135.5MHz with 500KHz

step, and SLOW from 8MHz to 67.75MHz with 250KHz step. The PFS is

designed to cover wide frequency scaling range from 8MHz to 271MHz.

Since the 3D graphics applications are executed at a given frame rate, or FPS

(Frame Per Second), finite amount of pixels should be drawn within the time slot

of a single frame. Once the vertex shader and the rendering engine finish drawing

pixels, their datapath do not need clocking for the rest of the time till restarting

next frame. Therefore, the host software running on the ARM10 processor

measures the average workload of the current frame, and sets the target frequency

of PFS adaptively for the next frame. The power-management software counts the

clock ticks from external counter when pixels of the given frame are completely

drawn. Then, it compares the measured number of clock ticks with pre-determined

value that is defined as the frequency of external counter's oscillator divided by

required frame rate. If the drawing pixels are completed earlier than the preset

threshold, then the software adjusts the chips's frequency for next frame to be

slower, and resets the external counter before starting the next frame. For the

case that the next frame requires more processing than the present, the software

maintains 25% margin in workload monitoring to avoid unwanted slowing-down.

To cover wide frequency scaling range with high tolerance against process

CHAPTER 3 Design of Graphics Processor 64

[Figure 3.3-3: Programmable Frequency Synthesizer]

(a) PFS System

VC

VC_UP

Fully Balanced V-I Converter

CCO

VC_DN

(c) Fully Balanced VCO

REMEMclk

OP_MODE
[FAST/

NORMAL/
SLOW]

PFD CP LPF

VCO

PRE
SCALAR

PROGRAM
COUNTER

SWALLOW
COUNTER

FREQ_
CTRL

P

S

Software

CK

= (16P+S)xCK
CKout

RESET

RISCclk

VSclk

REclk

REF CLK
(1MHz)

Enable

4

4

UP/
DOWN N

 N

1x

1x

1/4x

1/2x

FREQ
DIV

Four Clock
Domains

PFS ARM10

VS RE RE
Cache

1x

1x 0.25x 0.5x

External
Counter

Oscillrator

0f

Clock Ticks during a
Given Frame

T

etTfincrease
FPS

f
Tif arg

0 ,>

etTfdecrease
FPS

fTif arg
0 ,<

etTf arg

(b) PFS Block Diagram

CHAPTER 3 Design of Graphics Processor 65

variations, the PFS implements the fully balanced voltage-controlled oscillator

(VCO) as shown in Figure 3.3-3(c). The proposed VCO consists of a fully

balanced V-I converter and a current-controlled oscillator (CCO) with five delay

stages. Each stage is designed as fully balanced differential configuration. The V-I

converter converts the control voltage of VCO into complementary UP and DN

control bias voltages that drive two separated bias current sources. The CCO

minimizes the effects of power supply noise and substrate noise. The tuning range

of the VCO is 350MHz and ensures wide linearity range and nearly constant gain

over the rail-to-rail control voltage variation.

Adaptive variation of the clock frequency [41] is advantageous over the

conventional clock gating, which pumps the clock tree at the maximum frequency

and pause the clocks to the datapaths by gating off them abruptly after drawing

the frame. Even if the datapaths are prevented from transitions, the spine of clock

tree is kept pumped thus wastes power in the conventional clock gating.

Although the frequency of the clock output (CKout) is continuously changed

until being locked to the desired value, the chip can be reliably operated since all

logics are designed with fully static circuits and the chip communicates with

off-chip devices asynchronously. The PLL locking time is less than 50 and it㎲

[Figure 3.3-4: Measured Waveform (RISCclk in NORMAL Mode]

127MHz

112MHz

70MHz

93MHz

3.3V

CHAPTER 3 Design of Graphics Processor 66

consumes 2mW. Figure 3.3-4 shows the acquisition waveform of the PFS during

frequency change in NORMAL mode. As shown in this measurement results, the

PFS can provide the clock to each hardware block continuously without unwanted

transitions.

CHAPTER 4 Chip Implementation 67

CHAPTER 4

Chip Implementation

4.1 Implementation Results

The proposed graphics processor is fabricated in 0.18 6-metal standard CMOS㎛

logic process. The chip size is 36 mm2 including 2M logic transistors and 96kB

SRAM. Figure 4.1-1 shows the die photograph and Table 4.1-1 summarizes its

features. By using this chip, various 3D graphics algorithms and other multimedia

[Figure 4.1-1: Die Photograph]

ARMI$
(16kB)

D$
(16kB)

Vertex
Shader

B
U

S
C

od
e

Display
Buffer
(32kB)

Rendering
Engine

Depth $
(8kB)

Texture $
(6kB)

Frame$
(12kB)

PF
S

CHAPTER 4 Chip Implementation 68

functions can be processed with 50Mvertices/s peak graphics performance, and

24-bit true colored and texture-mapped graphics images can be drawn at the speed

of 50Mpixels/s and 200Mtexels/s

The coprocessor architecture of the proposed graphics processor can be easily

adopted inside of ARM platform-based mobile SoC (Figure 4.1-2(a)). Or, its

standard bi-directional asynchronous SRAM off-chip interface allows it to operate

with any existing microprocessor or mobile system chipset. Figure 4.1-2(b) is the

integration with existing application processor and baseband processor by utilizing

dual-port asynchronous SRAM for shared memory between the graphics processor

and host system.

[Table 4.1-1: Chip Characteristics]

Process Technology

Power Supply

Transistor Counts

Die Size

Operating Frequency
(ARM, VS / RE)

Power Consumption

General

Geometry

Rendering

Graphics
Functions

Programmability Vertex program version 1.1 compatible

Screen Resolution up to 512 x 512 pixels

Shading Gouraud / Flat

Texture Mapping Point/Bilinear MIPMAP filtering

Antialiasing x2, x4

0.18 um 6-Metal CMOS

1.8V(core), 3.3V(I/O)

2M Logic
96kB SRAM

4.8mm by 4.8mm (core)
6.0mm by 6.0mm (chip)

Fast : ~200MHz/50MHz
Normal : ~100MHz/25MHz
Slow : ~50MHz/12.5MHz

<155mW

1000MIPS (ARM and vertex shader)
80MFLOPS(software emulation)

50Mvertices/s
(Geometry transformation)

50Mpixels/s, 200Mtexels/s
(Bilinear MIPMAP filtered pixel)

Triangle Setup Hardware-accelerated triangle setup engine

Package 256 pin PBGA

Full 3D Pipeline
3.6Mpolygons/s (sustaining)
(Including full OpenGL lighting, clip check
and texturing)

Performance

CHAPTER 4 Chip Implementation 69

Figure 4.1-3 visualizes the system power consumption and overall full 3D

graphics performance for various configurations of the graphics processors. The

fixed-point graphics processing and the micro-level (instruction-level and

pixel-level) power management reduce the power consumption by 26% compared

to the previous implementation [13]. Moreover, parallel operations of the ARM10

processor and the vertex shader by dual operations increase the sustaining

graphics performance about 50 times. The additional power dissipated by dual

operations is as low as 3mW, because only simple instruction-fetch units are

required and remaining hardware blocks are shared by the two operating states.

The implemented graphics processor consumes 155mW in continuous calculation

of 3.6Mpolygons/s full 3D graphics pipeline including geometry transformation,

lighting, clip check, shading and bilinear MIPMAP texture mapping at FAST

mode (200MHz RISCclk, VSclk, and 50MHz REclk). For unlighted and

non-textured graphics applications, the power consumption is about 132mW and

the performance is increased up to 10Mpolygons/s for sustaining input of vertex

data. Figure 4.1-4 shows the area and power breakdown of the graphics processor.

[Figure 4.1-2: Integration of Graphics Processor into Mobile System Chipset]

ARM
Core

Vertex
Shader

Rendering
Engine

MEM
CTRLOthers TX/RX,

DFM, SBI

CPI

AMBA BUSGeneral
Purpose

BUS

PERI. ROM/
RAM

IF,
LNA

Baseband
Processor

(a) SoC Type (b) Multi-processor Type

ARM
Core

MEM
CTRL

ROM/
RAM

Dual
Port

SRAM

Graphics
Processor

M
EM

 IF

General
Purpose

BUS

Baseband
Processor

AMBA BUS

CHAPTER 4 Chip Implementation 70

[Figure 4.1-3: Performance and Power Consumption of Graphics Processor]

A [13] B C

Po
w

er
 c

on
su

m
pt

io
n

(m
W

)

Sustaining Full 3-D graphics Performance
(Polygons/sec)

D

26%
Reduction

E
0

20

40

60

80

100

120

140

160

180

200

210

167 170

155

132

0.07M
1.56M

2.77M

3.6M

10M

This Work

50 times
Improvement

Others (BUS, IO)

Power management

RISC with I/D caches

RE with graphics mem.

Vertex shader

No vertex shader

Conventional integer SIMD
processor

Floating-point graphics
processor

This work

A:

B:

C:

D:

E:

(w/ lighting and texturing)

This work

(w/ lighting and texturing)

(w/ lighting and texturing)

(w/ lighting and texturing)

(w/o lighting and texturing)

[Figure 4.1-4 (a): Gate Counts Breakdown of Graphics Processor]

CHAPTER 4 Chip Implementation 71

4.2 Evaluation Platform

System evaluation platform, called by REMY platform (Figure 4.2-1), was

developed to evaluate and demonstrate mobile 3D graphics using a flexible

topology and protocol. The REMY platform incorporates Intel's PXA255 host

processor with embedded Linux operating system since the prototype chip doesn't

implement subsidiary hardware blocks such as memory management unit and an

LCD controller. The host system is used for displaying and accessing the target

system while varying the configuration parameters such as external memory

capacity and bus protocols. The hardware layer of the REMY platform contains

the target system equipped with the fabricated chip and an FPGA system

controller. The FPGA chip is responsible for emulating operations of dual-port

SRAM and debugging the whole system.

The mobile graphics library, MobileGL, was implemented in the software layer

of the REMY platform to simplify development of applications. MobileGL is an

OpenGL-ES compatible graphics library optimized with hand-written assembly

[Figure 4.1-4 (b): Power Consumption Breakdown of Graphics

Processor during Operations of Full 3D Pipeline]

CHAPTER 4 Chip Implementation 72

[Figure 4.2-1: System Evaluation Platform]

PXA255
Host

System

Graphics
Processor

Chip
(DigiAcc-1)

System
Controller

(FPGA)

On-board
Memory

USB
Interface LCD

Display

O
ff-

ch
ip

 B
us

Native Platform Interface

MGL
States

Vertex
Shader
Invoke

Primitive
Assembly

Rendering
Engine
Invoke

Vertex
Array

Math
Lib.

3D Graphics App.

OS
(Linux)

Dev.
Driver

Windows &
GUI

Display
Program

H
ardw

are
Softw

are

Running on Target Running on Host

MobileGL

Real-time
Tracing
on PC

Cycle-
accurate
Emulator

Profiler

Developing

(a) Demonstation Board (Full 3-D Operation with Lighting and
Transformation)

(b) REMY Block Diagram

CHAPTER 4 Chip Implementation 73

language to improve performance of an ARM-based mobile 3D graphics system.

MobileGL consists of a fixed-point math library, vertex shader invocation

routines, rendering engine invocation routines, primitive assembly, and state

variables with vertex array capability. The native platform interface (NPI) provides

intrinsic functions of hardware-dependent programmer's model in assembly and a

high-level language for the core of the MobileGL. MobileGL can be ported to

various hardware configurations without major architecture modifications by using

NPI. The cycle-accurate software emulator of target hardware and the performance

profiler were implemented in the REMY platform for performance evaluations and

future derivative development.

As shown in the figure, the fabricated chip was successfully demonstrated on the

REMY platform while showing images of real-time 3D graphics.

4.3 Performance Comparison

The graphics performance in the mobile terminals cannot be compared directly in

terms of processing speed such as vertex calculation rate because the power

consumption must be taken into account as well. Although PC graphics hardware

provides many advanced features with high calculation rate, the power

consumption is too much to apply it to mobile platform. For the comparison of

the implemented graphics processor with other previous architectures, the

following performance index is used instead of only processing speed.

It is analogous to MIPS/mW in embedded RISC processor. Based on the

graphics index, the proposed graphics processor shows 161.2kVXPS/mW as

shown in Figure 4.3-1, which is significantly higher than other implementations.

Performance Index =
Vertex Processing Rate (Vertices/s)

Power Consumption
 = VXPS/mW

CHAPTER 4 Chip Implementation 74

Energy consumption is proportional to the number of memory access, so many

researchers focus on reducing off-chip bandwidth to enhance the battery lifetime

for mobile 3D applications. PowerVR's MBX architecture reduces the memory

accesses with tile-based rendering, but the performance is limited by the system

bus and the tiling overhead. Mitsubishi's Z3D core, intended for mobile phones,

utilizes clock gating to achieve the lowest power consumption in spite of a

floating-point geometry engine and 1Mbits embedded SRAM. However, its

performance and functionality are constrained by the low operating frequency

required by its limited power budget. The Playstation Portable (PSP), developed

by SONY, contains all necessary hardware blocks required for various applications

in a handheld video game system, including a MIPS processor with vector FPU,

media processing unit, rendering engine and surface engine. The PSP features

2Mb of embedded DRAM to boost internal memory bandwidth and support

Read-Modify-Write operations for 3D graphics. The rendering engine and surface

[Figure 4.3-1: Performance Comparison]

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170

5.0

42.9

144.0

161.2

ISSCC 2003
[13]

ISSCC 2004
[42]

ISSCC 2004
[21]

This Work

12%
Improvement

Pe
rf

or
m

an
ce

 In
de

x
(K

ve
rt

ic
es

/s
 p

er
 m

W
)

CHAPTER 4 Chip Implementation 75

engine can execute more advanced graphics algorithm such as tessellation,

skinning and morphing. The PSP also enables H.264 decoding for mobile video

applications. However, the relatively high power consumption of the PSP limits its

application in mobile terminals such as cell-phones. nVidia's SC10 provides

complete hardware acceleration for mobile multimedia. It supports 2D/3D graphics

and MPEG4 video with camera functions. The SC10 distinguishes itself from

other architectures by implementing pixel-level programmability such as blending

and combining operations for more realistic graphics images on handheld displays.

However, the SC10 lacks a geometry engine for balanced performance. Table

4.3-1 summarizes the performance comparison and supported features of various

graphics architectures.

The design consideration in the proposed graphics processor is to show the high

energy-efficiency that is achievable by scaling and optimizing a processor's

graphics functionality. The main design focus is on a simple programmable

architecture optimized for mobile platforms, such as ARM processors, while

achieving high performance with low power consumption.

CHAPTER 4 Chip Implementation 76

[Table 4.3-1: Summary of Various Graphics Architectures]

A
re

a
w

/o
 P

A
D

(@
0.

18
um

)

22~7
0

N
/A

<1
503016 <4
00m

m2

m
m2 m

m2

m
m2

m
m2 m

m2

Po
w

er
C

on
su

m
pt

io
n

15
5m

W
@

20
0M

H
z

75
m

W
@

72
M

H
z

N
/A

@
10

0M
H

z

50
0m

W
@

16
6M

H
z

38
m

W
@

30
M

H
z

20
8m

W
@

12
0M

H
z

<1
00

W

Pe
rf

or
m

an
ce

50
M

ve
rt

ic
es

/s
50

M
pi

xe
ls

/s

1M
ve

rt
ic

es
/s

72
M

pi
xe

ls
/s

1M
ve

rt
ic

es
/s

10
0M

pi
xe

ls
/s

35
M

ve
rt

ic
es

/s
66

4M
pi

xe
l/s

18
5K

ve
rt

ic
es

/s
5.

1M
pi

xe
ls

/s

2.
5M

ve
rt

ic
es

/s
48

0M
pi

xe
ls

/s

60
0M

ve
rt

ic
es

/s

In
te

gr
at

io
n

In
te

rf
ac

e

A
R

M
10

C
op

ro
ce

ss
or

O
ff-

C
hi

p
B

us

N
/A

St
an

d
al

on
e

O
ff-

C
hi

p
B

us

A
M

B
A

A
G

P
B

us

3D
 F

ea
tu

re

Ve
rt

ex
Pr

og
ra

m
m

in
g,

Sh
ad

in
g,

 T
ex

tu
rin

g

Sh
ad

in
g,

M
ul

tit
ex

tu
rin

g

Te
xt

ur
in

g,
Ve

rt
ex

 F
og

Su
rf

ac
e

En
gi

ne
,

Ve
rt

ex
 B

le
nd

in
g,

M
ul

tit
ex

tu
rin

g

Te
xt

ur
in

g,
M

ul
til

ig
ht

,
Sh

ad
in

g

Li
gh

tin
g,

M
ul

tit
ex

tu
rin

g,
B

um
p

M
ap

pi
ng

R
ic

h
Ve

rt
ex

 &
Pi

xe
l S

ha
di

ng

2D
 F

ea
tu

re

G
en

er
al

 P
ur

po
se

In
te

ge
r S

IM
D

H
/W

 M
PE

G
4

C
od

ec
H

/W
 J

PE
G

 C
od

ec
64

bi
t 2

D
 E

ng
in

e

M
PE

G
4

D
ec

od
er

JP
EG

 C
od

ec

H
/W

 H
.2

64
 D

ec
od

e,
AA

C/
M

P3
 A

ud
io

 C
od

ec

R
ec

ta
ng

le
 F

ill
,

B
it

B
lo

ck
 T

ra
ns

fe
r

N
/A

N
/A

H
ar

dw
ar

e
A

cc
el

er
at

io
n

G
eo

m
et

ry
 +

R
en

de
rin

g

R
en

de
rin

g
O

nl
y

G
eo

m
et

ry
 +

R
en

de
rin

g

R
en

de
rin

g
+

G
eo

m
et

ry
(O

pt
io

n)

G
eo

m
et

ry
 +

R
en

de
rin

g

A
rc

hi
te

ct
ur

e

Th
is

 W
or

k

nV
id

ia
's

 S
C

10

A
TI

's
Im

ag
eo

n2
30

0

SO
N

Y'
s

PS
P

M
its

ub
is

hi
's

Z3
D

Po
w

er
VR

's
M

B
X

H
R

-S

nV
id

ia
's

G
eF

or
ce

 6
80

0
(P

C
 g

ra
ph

ic
s)

G
ra

ph
ic

s
In

de
x

16
1.

2
K

VX
PS

/m
W

13
.3

 K
VX

PS
/m

W

N
/A

70
 K

VX
PS

/m
W

4.
9

K
VX

PS
/m

W

12
.0

 K
VX

PS
/m

W

>6
 K

VX
PS

/m
W

CHAPTER 5 Enhancing Stream Processing 77

CHAPTER 5

Enhancing Stream Processing

5.1 Data Stream Architecture

5.1.1 Concepts of Stream Processing

Improving technology of VLSI system makes performance of arithmetic units

sufficiently high while bandwidth is still insufficient. Many architectures use cache

system [43] or embedded memory [11-13][17] system for compensating bandwidth

requirements. However, cache architecture cannot provide enough benefits in

multimedia signal processing, in that, generally, primitives are processed once and

then discarded. And, embedded memory architectures show low scalability and

high physical design complexity, causing adaptation of screen and primitive size

changes difficult. In a few years, stream processing is being implemented to

exploit locality in signal processing [44-47]. In stream processing, data are

organized as streams and all computations as kernels. A stream is defined as

single type's collection of data records requiring same computation, and a kernel

is defined as a function applied to each element in a stream. A stream processor

executes a kernel over all elements of an input stream and places results into an

output stream as illustrated in Figure 5.1-1. Therefore, it exploits data parallelism

to make computing element busy as well as data locality to increase arithmetic

intensity (the ratio of arithmetic to bandwidth) [45].

Producer-consumer locality occurs when one component of a system is producing

CHAPTER 5 Enhancing Stream Processing 78

something that is immediately consumed by another component of the system.

This locality features multimedia signal processing itself, expecially 3D graphics.

In the graphics pipeline, each stage generates output results that are immediately

used by next stage as shown in Figure 5.1-2 [48]. The heterogeneous streams that

require non-identical operations on each element by specified conditions such as

culling can be splitted to separate homogeneous streams by conditions.

[Figure 5.1-1: Stream Processing]

First Out

Stream

First In

Kernel

[Figure 5.1-2: Stream Representation of Graphics Pipeline]

Transform

GLShader

Primitive
Assembly

Cull

Project

Geometry

Spanprep

Spangen

Spanrast

Rasterization

Texture
Lookup

Input
Data

Hash

Sort /
Merge

Compact

Composite

Color, Z
Write

Z Lookup

Z compare

Image

CHAPTER 5 Enhancing Stream Processing 79

Figure 5.1-3 shows the Imagine Stream Processor developed by Stanford

University [44]. In view of hardware implementation, stream processor requires

two features high throughput computing elements for data parallelism and―

hierarchical memory system for capturing producer-consumer locality. Large ALU

clusters or SIMD computing elements execute stream kernels. Stream register file

(SRF), organized by 128KByte SRAM and 22 stream buffers, captures

producer-consumer locality generated by the ALU clusters. Only reduced global

data are transferred through external SDRAM controller. The stream buffers stores

temporarily fragments of generated streams from eight cluster ports, eight network

ports, four external memory system ports, one microcontroller port and one host

system port before accessing SRAM, which yielding high bandwidth for the ALU

clusters. Although this massive architecture causes hugh power consumption, the

concepts of stream processing should be taken into account for designing mobile

graphics hardware for enhancing performance.

[Figure 5.1-3: Imagine Stream Processor]

Arithmetic
Cluster

Arithmetic
Cluster

Arithmetic
Cluster

St
re

am
R

eg
is

te
r F

ile

Stream
Controller

Microcontroller

Network
Interface

St
re

am
in

g
M

em
or

ySDRAM

SDRAM

SDRAM

SDRAM

Host

Imagine Processor

Network
Device
(Other

Imagines
or I/O)

2.67GBytes/s 32GBytes/s 544GBytes/s

20GFLOPS

Capture Long-term
P-C Locality

Capture Short-term
P-C Locality

Local
Register

File

CHAPTER 5 Enhancing Stream Processing 80

5.1.2 Stream Processing in 3D Graphics

Although graphics pipeline can be represented effectively as stream processing,

modern graphics system such as OpenGL [49] processes graphics data in

immediate mode basically. In this mode, each parameter of primitive is issued

immediately to graphics system by application programming interface (API)

function call, allowing representation of graphics primitives to match application's

own data structure. However, each API call interrupts graphics system and thus

reduces efficiency for stream processing. As a response of this point, OpenGL

supports vertex array functions to enable batch processing, reducing function call

overhead. Vertex array is defined as place where a block of vertex records such

as coordinates and colors may be stored in array format. Figure 5.1-2 shows the

difference between intermediate mode and vertex array mode. Since each element

in vertex array requires same operations repeatedly, graphics hardware can use

virtue of stream processing in vertex array mode.

In order to enhance efficiency in processing vertex array, each element of vertex

array can be indexed and these indices can be used to reference actual vertex

[Figure 5.1-2: Immediate Mode and Vertex Array Mode]

Graphics
System

Color 0

Coord 0

Color 1

Coord 1

 Begin (TRIANGLES);
 Color3f(1, 0, 0);
 Vertex3f(0, 0, 0);
 Color3f(0, 0, 1);
 Vertex3f(0, 1, 0);

 End();

Graphics
System

Color 0

Coord 0

Color 1

Coord 1

 float Vertex_Array = {...};
 float Color_Array = {...};
 VertexPointer(Vertex_Array);
 ColorPointer(Color_Array);

 DrawArray(TRIANGLES, 0,n);

(a) Immediate Mode (a) Vertex Array Mode

CHAPTER 5 Enhancing Stream Processing 81

data. Since most of 3D graphics models are topologically same with a sphere,

some portions of vertex data can be used multiple times in representing models.

Thus, indexing vertex records and referencing indices instead of vertex data

themselves can reduce the total bandwidth consumed when handling long

sequence of triangles as shown in Figure 5.1-3. Since many implementations of

graphics system contain cache memory, reused vertices can be resided in cache

memory after first referencing. The indices can be used for tag information in

such cache operations. Moreover, because triangle strips represent each additional

triangle by adding just one vertex, strips can further reduce bandwidth. The most

optimal case is indexed strip.

Modern graphics system such as OpenGL adopts client-server model. That is, a

program (the client) issues commands, and these commands are interpreted and

processed by the graphics system (the server). The server may or may not operate

on the same computer as the client. In this sense, the graphics system is

"network-transparent." A server may maintain a number of contexts, each of

which is an encapsulation of current state of graphics system. A client may

choose to connect to any one of these contexts. This separation gives much

[Figure 5.1-3: Indexed Drawing]

(a) Triangle Lists

(b) Triangle Strip

V0

V1

V2

V3

V4

V5

T1
T2

T3

T4

V0
V1

V2

V3

V4
V5

T1

T2 v0

v1

v2

v3

vn

i0
i1
i2
i3

im

Typically
n << m

(c) Indexed Referenceing

CHAPTER 5 Enhancing Stream Processing 82

flexibility to implementations of graphics system. The implementations don't have

to consider client-specific features and only provide encapsulated graphics

functionality. The original implementation of vertex array is client-side features, in

that actual graphics data should be copied to server-side before processing. For

more efficient memory management, vertex buffer object (VBO) is introduced as

shown in Figure 5.1-4 [50]. In VBO, the storage of graphics data is resided in

server-side, that is graphics hardware. The graphics hardware can choose optimal

places for these storages and match them to its own memory system structure.

The client-side has only state parameters such as size, hints and mapping pointer.

These state information can be shared between graphics contexts like texture

[Figure 5.1-4: Vertex Buffer Object]

size
type

stride
offset
buffer

size
type

stride
offset
buffer

size
type

stride
offset
buffer

size
type

stride
offset
buffer

Application

Initial Copy
of Vertex Data

Vertex Buffer
Parameters

Client (Host)

Binded
Memory

+
State

Binded
Memory

+
State

Binded
Memory

+
State

Graphics
Pipeline

Vertex Buffer
Objects

Server (Graphics Hardware)

[Figure 5.1-5: Vertex Declaration from Multiple Streams]

pos tc0 norm

Stream 0 Stream 1

pos tc0 norm

Stream 0

Vertex Layout

Declaration

CHAPTER 5 Enhancing Stream Processing 83

objects. Therefore, the VBO and indexed operations can improve stram processing

in graphics hardware moderately. It is not restricted that each vertex data is stored

in a single VBO. Figure 5.1-5 illustrates the situation that a group of vertex

records are combined from multiple VBOs.

5.2 Enhancing Stream Processing in Graphics Processor

5.2.1 Architecture Revision

Figure 5.2-1 is the revised architecture of implemented graphics processor in

previous chapters for enhancing stream processing. Although the separation of

data transfer flow by coprocessor architecture gives benefits to stream processing

by improving parallelism of processing elements, the revised architecture contains

hierarchical memory system to capture producer-consumer locality more

effectively. The data transfer path composed of a single display buffer connected

directly to the vertex shader in the figure 2.2-2 is replaced by local multi-layer

bus architecture including DMA engine and separated display buffer memories

(gray region in the figure 5.2-1). The revised architecture can be explained by the

following features.

(a) Separated from main system bus, it has two bus layers for geometry

sub-system and rendering sub-system respectively. It can help the local traffic

generated by producer-consumer locality to be completely captured inside and

separated from global traffic that is transferred through main system bus. Also,

the two bus layers are assigned to each graphics pipeline wholly and connected

through bus bridges, increasing bandwidth throughput. Since the figure 2.1-1 in

the chapter 2 tells that transferring data from application to geometry stage and

transferring data from geometry stage to rendering stage altogether require half

gigabyte bandwidth per second, each sub-bus operating at 200MHz with 4-byte or

8-byte data width can provide sufficient performance. Because these added

CHAPTER 5 Enhancing Stream Processing 84

two-layer bus architecture is installed locally in the graphics sub-system instead of

in the global system bus, hardware cost such as power consumption and area can

be more reduced than conventional global multi-layer bus system.

(b) The revised architecture provides multiple (three) separated display buffer

memories for managing multiple streams. This feature can be utilized in

implementing VBOs with allowing optimal choice of memory locations.

[Figure 5.2-1: Enhanced Graphics Processor for Stream Processing ("M" means that this

port is a bus-master, and "S" means that this port is a bus-slave)]

ARM

Coprocessor
Interface

Vertex
Shader

Vertex Index
FIFO

Rendering
Engine

I-cache

D-cache

Display
Buffer 0

Display
Buffer 1

DMA
Controller

Frame/
Depth
Cache

Texture
Cache

Bridge

Display
Buffer 2

Ext. DRAM
Controller

Bridge

Ext. DRAM
Controller

External
Graphics
SDRAM

External
System
SDRAM

M

S

S

S

M

M

M

M

M

M

M

M

S

S

Pre-TnL
Vertex
Index

Post-TnL
Vertex
Index

Geometry
Sub-bus

Rendering
Sub-bus

Main
System-bus

Pre-TnL
Vertex &

Local Data

Post-TnL
Vertex

Frame / Depth Buffer
&

Model Data

2nd Level Memory:
Capture Producer-Consumer Locality

1st Level Memory:
Internal Registers of
Processing Elements

3rd Level Memory:
Global Data

CHAPTER 5 Enhancing Stream Processing 85

Generally, coordinates are assigned to each vertex while other parameters such as

normal vector and colors may be reused among multiple vertices. Therefore, some

VBOs can have different lifetime such as dynamic or stream types from others of

static type. Like illustration in the figure 5.1-5, display buffer 0 can be assigned

for coordinates of vertices before geometry operations (Pre-TnL) while display

buffer 1 is for other parameters of vertices. The vertex shader can use display

buffer 2 for storing vertex data after finishing geometry operations (Post-TnL). As

indicated in the figure 2.6-2 in the chapter 2, about 16kB is sufficient for the

capacity of each display buffer memory because single vertex data can be

distributed in two or more display buffer memories.

(c) The coprocessor interface and vertex FIFO that are originally used for the

command path in the figure 2.2-2 are utilized to transfer vertex indices between

processing elements. The coprocessor interface is used for transferring Pre-TnL

vertex indices while the vertex FIFO is for Post-TnL vertex indices. As described

in the figure 5.1-3, the indexed drawing reduces total bandwidth and are well

matched to the revised architecture of graphics processor. Using indices as

commands can improve issue efficiency of graphics processing elements because

the required bytes of indices are much smaller than the size of vertex data.

(d) The revised architecture suggests that external SDRAM can be attached to

the rendering sub-bus. This external SDRAM can store frame buffer data and

some texture images. It can also contain initial vertex model data before graphics

processing. In most cases, the graphics SDRAM can be stacked on die of the

graphics processor in a single chip package. If graphics pipeline is represented as

stream processing, the final frame buffer data can be resided in the graphics

SDRAM and separated from the initial input data stream, which is stored in the

system's main SDRAM.

(e) In the revised architecture, a single two port DMA engine connects the

CHAPTER 5 Enhancing Stream Processing 86

two-layer graphics sub-bus to the main system bus via a single master port. The

DMA engine is controlled by main ARM processor and thus every slave port in

the graphics sub-bus, that are all display buffer memories and the external

graphics SDRAM, are accessible in a common memory space of the ARM

processor. This configuration gives flexibility to managing memories. Moreover,

since the dual operations described in the section 2.4 allows the ARM processor

to operate in parallel with the vertex shader and the rendering engine, the DMA

engine controlled by the ARM processor can show maximum throughput in

transferring data between the display buffer memories and the system's main

memory. Also, the frame buffer data in the external graphics SDRAM can be

accessed directly to the main SDRAM through the DMA engine.

(f) The geometry sub-bus and the rendering sub-bus are connected to each other

a bus bridge, and another bus bridge is used to connect the rendering sub-bus to

the main system bus. The first bus bridge allows the rendering engine to access

the display buffer memories, causing local traffic generated from geometry stage

to be captured directly to rendering stage. The second bus bridge makes the

rendering engine to access system's main memory directly for texture data or to

use the main SDRAM as frame buffer in the absence of the graphics SDRAM.

Entirely, the ARM processor with graphics elements are wrapped by three bus

master ports. The coprocessor architecture makes the graphics processor to be

extended easily for enhancing stream processing with low cost by using typical

SoC building blocks such as two bus arbiters, two bus bridges and one DMA

engine.

5.2.2 Performance Limitation

The performance of the revised architecture can be estimated from amount of

provided bandwidth. The revised architecture can be regarded to have separate

CHAPTER 5 Enhancing Stream Processing 87

DRAMs to geometry and rendering stages. In a typical mobile applications, a

32-bit SDRAM chip running 100MHz (PC100) is used as external memory and

gives a suitable bandwidth 200MB/s with approximately 50% of efficiency. For

rendering stage, the required bandwidth for each buffer can be calculated by the

following relations.

From the description in the section 3.2.1, the required bandwidth for frame

buffer and depth buffer when filling 100Mpixels/s are 100.8MB/s and 38.4MB/s

respectively. Thus, if remaining bandwidth of the graphics SDRAM or the system

main memory are used for texture memories, pixel fill rate can be reached up to

tens of Mpixels per second.

For geometry stage, vertex data and related index can be fetched from the

system main memory. The indices are issued from the ARM processor via the

coprocessor interface and the vertex data are transferred from the DMA engine to

the display buffer memories. It is needed to restrict the provided bandwidth to the

BW = Pixel Fill Rate*Cache Miss Rate*Block Size*Pixel Size

[Figure 5.2-2: Performance Limitation of Mobile Graphics Hardware]

0 100 200 300 400
0M

2M

4M

6M

8M

10M

12M

Bandwidth (MB/s)

Pr
oc

es
si

ng
 S

pe
ed

(V
er

tic
es

/s
)

CHAPTER 5 Enhancing Stream Processing 88

vertex shader to about 100MB/s in order to allocate the remains to the ARM

processor or other devices. Figure 5.2-2 shows the relationship between the

provided memory bandwidth and the graphics performance when indexed drawing

is performed with composting vertex data from two streams. In this case, it is

assumed that the processing power of the vertex shader can provide the speed of

25Mvertices/s theoretically. In this graph, the best achievable performance does

not exceed about 10Mvertices/s. Therefore, the processing capability of mobile

graphics system should be designed to match that performance limitation in most

cases.

CHAPTER 6 Conclusions and Further Work 89

CHAPTER 6

Conclusions and Further Work

6.1 Conclusions

A low power graphics processor is designed, implemented and demonstrated for

mobile 2D and 3D graphics and various multimedia applications. Most graphics

architectures for mobile applications have mainly focused on rasterization and

texture mapping due to high processing requirements. In order to balance 3D

graphics pipeline within the limited system resources, I integrated simple and

efficient programmable architecture for vertex shading as well as low power

rendering engine instead of using dedicated hardware engine with complex

functions.

The proposed graphics processor has four major features: (a) Separation of data

transfer flow is proposed for efficient hardware and bandwidth utilization.

Different from previous works, the ARM coprocessor architecture enables

optimized performance throughput while achieving easy programmability by

separating command transfer path from data transfer path. (b) Full hardware

accelerations with stream processing is achieved to boost-up the sustained

performance in compact and fast hardware. The producer-consumer locality, that

are frequently observed in stream multimedia operations such as 3D graphics, is

also considered in hardware design. (c) Two level extensions of instruction set

CHAPTER 6 Conclusions and Further Work 90

architecture are implemented for programmability and parallel processing. The

added multimedia instructions by the coprocessor architecture is once again

extended to more optimized graphics instructions by dual operations, in which

concurrent operations of the graphics coprocessor with the main processor is

enabled. And, (d) Fixed-point SIMD processing is employed for low power

consumption and low cost implementation. It exploits data level parallelism in

graphics processing while keeping the power consumption low.

The graphics processor contains an ARM10 compatible 32-bit RISC processor, a

128-bit programmable fixed-point single-instruction-multiple-data (SIMD) vertex

shader, a low power rendering engine with 26kB dedicated graphics cache, and a

programmable frequency synthesizer (PFS). The circuits and architecture of the

graphics processor are optimized for fixed-point operations and achieve the low

power consumption with help of instruction-level power management of the vertex

shader and pixel-level clock gating of the rendering engine. SIMD datapath of the

vertex shader achieves a single cycle throughput for most graphics instructions for

geometry operations. Also, the vertex shader can accelerate primitive assembly

such as clipping and culling by conditional executions and clip code instruction.

The rendering engine performs the rasterization and the per-pixel operations such

as pixel blending and texture mapping with energy-efficient graphics cache

system. The PFS with a fully balanced voltage-controlled oscillator (VCO)

controls the clock frequency from 8MHz to 200MHz continuously and adaptively

for low power modes by software. The 36mm2 chip shows 50Mvertices/s and

200Mtexels/s peak graphics performance for parallel projection, dissipating

155mW in 0.18 6-metal standard CMOS logic process. In sustained operations,㎛

the implemented graphics processor can calculate full 3D graphics pipeline

including geometry transformation, lighting, clip check, shading and bilinear

CHAPTER 6 Conclusions and Further Work 91

MIPMAP texture mapping at the speed of 3.6Mpolygons/s

For explanations and optimizations of mobile graphics architecture, model of 3D

graphics computing is described and simulated. Various parameters such as

memory capacity, bandwidth and batch size are analyzed to show influences in

overall performance. The implemented graphics processor with 32kB display

buffer is verified to show sufficient performance while consuming 100MHz

bandwidth. Since graphics pipeline can be represented effectively as stream

processing, I revised the architecture of graphics processor so that multimedia

streams can be more effectively processed. SIMD computing elements and

hierarchical memory system with multi-layer sub-bus and DMA engine replace the

data transfer path composed of a single display buffer connected directly to the

vertex shader. In the case of indexed drawing, the overall performance is expected

to be improved up to 8Mvertices/s and 100Mpixels/s.

The system evaluation platform is also developed to evaluate and demonstrate

mobile 3D graphics using a flexible topology and protocol. It includes software

graphics library with programming interface of the graphics processor for

simplifying application development.

The implemented graphics processor was successfully demonstrated on the

evaluation platform and verified real-time 3D graphics in mobile applications.

6.2 Further Works

Since software architecture for programmable shading and stream processing is

not sufficiently defined for mobile platforms, further research on optimal software

layers for mobile graphics system are required for highly effective performance

CHAPTER 6 Conclusions and Further Work 92

achievement. In the area of hardware research, more advanced bus architecture

and memory system such as accelerated graphics port (AGP) in PC graphics

system can be considered to be applied for mobile multimedia system. And, the

focus on the design of a fragment shader is required to generate more

photo-realistic pixels with high sustained throughput. Finally, the combination of

vertex shader, pixel shader and even 2D video engine in a single hardware

architecture will be studied.

Summary 93

Summary

국문요약

고정 소수점 를 이용한 저전력SIMD Vertex Shader

프로그래머블 그래픽스 프로세서3D

실시간 차원 그래픽스는 휴대용 터미널에서 가장 흥미 있는 응용분야가 되3

고 있다 그렇지만 휴대용 단말기에서는 한정된 전지 사용시간과 계산 성능. ,

이 그래픽스 처리를 위한 시스템 자원과 메모리 대역폭을 제한하고 있다 게.

다가 사용자들은 그래픽스와는 상대적으로 작은 화면에서 그래픽스 이미, PC

지를 매우 가까이서 사용하고 있기 때문에 최근의 휴대용 차원 그래픽스는, 3

하드웨어와 소프트웨어에서 적은 소비전력으로 더욱 향상된 기능을 제공하
기 위해 프로그램 처리 능력을 제공하고 있다 본 연구에서는 휴대용 응용분.

야를 위해 고정 소수점 를 이용한 프로그래머블 그래픽스 프로세vertex shader

서를 설계하고 구현하였다 제안된 구조는 데이터 흐름의 분리 스트림 처리. ,

를 고려한 완전한 하드웨어 가속 두 단계의 명령어 구조 확장 그리고 저전력,

소비를 위한 고정 소수점 연산구조의 네 가지 특징을 가지고 있다 설SIMD .

계된 그래픽스 프로세서는 비트 호환의 프로세서 비트32 ARM10 RISC , 128

의 고정소수점 의 별도 그래픽스 캐쉬를 장착한 저SIMD vertex shader, 26kB

전력 그리고 프로그래머블 주파수 합성기를 포함하고 있다rendering engine, .

일반적인 그래픽스 하드웨어와는 달리 제안된 그래픽스 프로세서는, ARM10

보조 프로세서 인터페이스를 사용하여 집적하였고 이중 동작 기능을 구현, " "

하여 진보된 그래픽스 알고리즘과 다양한 스트리밍 멀티미디어 응용을 실현

Summary 94

하기 위한 프로그래머블 을 가능하게 하였다 저전력 소비를 위vertex shading .

해 그래픽스 프로세서의 회로와 내부 구조는 고정 소수점 연산에 최적화하여
설계되었다 또한 의 명령어 단위 전력 제어 기술과. vertex shader rendering

의 픽셀 단위 기술을 사용하여 전력 소비 효율을 더욱 향상engine clock gating

시켰다 완전 균형 전압조정발진기를 내장한 프로그래머블 주파수 합성기는.

소프트웨어의 제어에 따라 전체 칩의 동작 주파수를 부터 까지8MHz 200MHz

연속적이고 적응성 있게 조절한다 이 칩은 최고 의 전력을 소비하면. 155mW

서 최대 의 그래픽스 성능을 나타낸다50Mvertices/s and 200Mtexels/s . 0.18㎛

표준 공정으로 사용하여 칩을 제작하였고6-metal CMOS 36mm2 면적을 차지
하였다 더 향상된 스트림 처리 성능을 위해 설게된 그래픽스 프로세서를 계. ,

층적 메모리 구조를 가지는 연산장치로 새로이 확장하였다 구현된 그SIMD .

래픽스 프로세는 평가보드를 통해 성공적으로 시연되었고 휴대용 응용분야,

에서 실시간 차원 그래픽스의 구현을 입증하였다3 .

Bibliography 95

Bibliography

[1] John S. Montrym, et al, "NVIDIA GeForce 6800," in Proceedings. of HotChips

16, 2004

[2] Gordon Elder, "ATI Radeon 9700: Architecture and 3D Performance," in Hot3D

of ACM SIGGRAPH/Eurographics Workshop on Graphics Hardware, 2002

[3] Aurangeb Khan, et al, "A 150-MHz Graphics Rendering Processor with 256-Mb

Embedded DRAM," IEEE Journal of Solid-State Circuits, Vol. 36, No. 11, pp.

1775-1784, Nov. 2001

[4] David Clark, "Mobile processors begin to grow up", IEEE Computer Magazine,

Vol. 35, Issue 3, pp. 22-24, March, 2002

[5] Tomas Akenine-Moller, et al, "Graphics for the Masses: A Hardware Rasterization

Architecture for Mobile Phones," in Proceedings of ACM SIGGRAPH, pp. 801-808,

2003

[6] Ju-Ho Sohn, et al, "Optimization of Portable System Architecture for Real-time

3D Graphics," in Proceedings of IEEE International Symposium on Circuits and

System, pp. 1769-1772, 2002

[7] Donghyun Kim, et al, "An SoC with 1.3Gtexels/s 3-D Graphics Full Pipeline for

Consumer Applications," IEEE Journal of Solid-State Circuits, Vol. 41, No. 1, pp.

71-84, Jan. 2006

[8] Alan Watt, "3D Computer Graphics," 3rd edition, Addison-Wesley, 2000

[9] Kris Gray, "Microsoft DirectX 9 Programmable Graphics Pipeline," Microsoft

Press, 2003

[10] Ju-Ho Sohn, et al, "Low-power 3D Graphics Processors for Mobile Terminals,"

Bibliography 96

IEEE Communications Magazine, Vol. 43, No. 12, pp. 90-99, Dec. 2005

[11] Yong-Ha Park, et al, "A 7.1GB/s Low Power Rendering Engine in 2D Array

Embedded Memory Logic CMOS for Portable Multimedia System," IEEE Journal of

Solid-State Circuits, Vol. 36, No. 6, pp.944-955, Jun. 2001

[12] Chi-Weon Yoon, et al, "A 80/20MHz 160mW Multimedia processor Integrated

with Embedded DRAM, MPEG4 and 3D Rendering Engine for Mobile Applications,"

IEEE Journal of Solid-State Circuits, Vol. 36, No. 11, pp. 1758-1767, Nov. 2001

[13] Ramchan Woo, et al, "A 210mW Graphics LSI Implementing Full 3D Pipeline

with 264Mtexels/s Texturing for Mobile Multimedia Applications, " IEEE Journal of

Solid-State Circuits, Vol. 39, No. 2, pp. 358-367, Feb. 2004

[14] David A. Patterson, et al, "Computer Architecture: A Quantitative Approach,"

2nd edition, Morgan Kaufmann Publishers, 1996

[15] "ARM MBX HR-S 3D Graphics Core Technical Overview," Technical

Document, ARM DTO-0003B, 2002

[16] John S. Montrym, et al, "InfinityReality: A Real-time Graphics System," in

Proceedings of ACM SIGGRAPH, pp. 293-302, 1997

[17] Masanobu Okabe, et al, "A 90nm Embedded DRAM Single Chip LSI with a 3D

Graphics, H.264 Codec Engine, and a Reconfigurable Processor," in Proceedings of

HotChips 16, 2004

[18] Edward Hutchins, et al, "SC10: A Video Processor and Pixel Shading GPU For

Handheld Devices," in Proceedings of HotChips 16, 2004

[19] Masatoshi Kameyama, et al, "3D Graphics LSI Core for Mobile Phone: Z3D," in

Proceedings of ACM SIGGRAPH/Eurographics Workshop on Graphics Hardware, pp.

60-67, 2003

[20] Gregory Uvieghara, et al, "A Highly Integrated 3G CDMA2000 1X Cellular

Baseband Chip with GSM/AMPS/GPS/Bluetooth//Multimedia Capabilities and ZIF RF

Support," in Digest of Technical Papers of IEEE International Solid-State Circuits

Bibliography 97

Conference, pp. 422-423, 2004

[21] Fumio Arakawa, "An Embedded Processor Core for Consumer Appliances with

2.8GFLOPS and 36Mpolygons/s," in Digest of Technical Papers of IEEE International

Solid-State Circuits Conference, pp. 334-335, 2004

[22] OpenGL-ES, available at http://www.khronos.org/opengles/

[23] OMAP, available at http://focus.ti.com/omap/docs/omaphomepage.tsp

[24] Matthew Eldridge, "Designing Graphics Architectures Around Scalability and

Communication," Ph.D. Dissertation, Stanford University, Jun. 2001

[25] Ju-Ho Sohn, et al, "A 50Mvertices/s Graphics Processor with Fixed-point

Programmable Vertex Shader for Mobile Applications," in Digest of Technical Papers

of IEEE International Solid-State Circuits Conference, pp. 192-193, 2005

[26] Ju-Ho Sohn, et al, "A 155mW, 50Mvertices/s Graphics Processor with

Fixed-point Programmable Vertex Shader for Mobile Applications," IEEE Journal of

Solid-State Circuits, Vol. 41, No. 5, pp. 1081-1091, May. 2006

[27] Steve Furber, "ARM: System-on-chip Architecture," 2nd edition, Addison-Wesley

Press, 2000

[28] Ian Thornton, "ARM PrimeXsys Wireless Platform," White Paper, available at

http://www.arm.com

[29] Ramchan Woo, "A Low-power 3D Rendering Engine with Two Texture Units

and 29Mb Embedded DRAM for 3G Multimedia Terminals," IEEE Journal of

Solid-State Circuits, Vol. 39, No. 7, pp. 1101-1109, Jul. 2004

[30] Intel Wireless MMX Technology, available at http://www.intel.com

[31] Prashant P. Gandhi, "SA1500: A 300MHz RISC CPU with Attached Media

Processor," in Proceedings of HotChips 10, 1998

[32] G. K. Golli, et al, "3D Graphics Optimization for ARM Architecture," presented

at Game Developer Conference 2002, March, 2002

[33] Xuejun Hao, et al, "Variable-precision rendering." in Proceedings of the 2001

Bibliography 98

Symposium on Interactive 3D Graphics, pp. 149-158, 2001

[34] Ju-Ho Sohn, et al, "A Programmable Vertex Shader with Fixed-point SIMD

Datapath for Low Power Wireless Applications," in Proceedings SIGGRAPH

/Eurographics Workshop on Graphics Hardware, pp. 107-114, 2004

[35] Ju-Ho Sohn, et al, "A Fixed-point Multimedia Coprocessor for 50Mvertices/s

Programmable SIMD Vertex Shader for Mobile Applications," in Proceedings of

IEEE European Solid-State Circuits Conference, pp. 207-210, 2005

[36] Michael Deering, "Geometry compression", in Proceedings of the 22nd Annual

Conference on Computer Graphics and Interactive Techniques, pp. 13-20, 1995

[37] Erik Lindholm, et al, "A User-programmable Vertex Engine," in Proceedings of

ACM SIGGRAPH, pp. 149-158, 2001

[38] Bengt-Olaf Schneider, "Efficient Polygon Clipping for an SIMD Pipeline," IEEE

Transactions on Visualization and Computer Graphics, Vol. 4, No. 3, Jul.-Sep. 1998

[39] HP Western Research Lab., CACTI, available:

http://research.compaq.com/wrl/people/jouppi/CACTI.html

[40] Ziyad S. Hakura, et al, "The Design and Analysis of a Cache Architecture for

Texture Mapping," in Proceedings of the 24th International Symposium on Computer

Architecture, pp. 108-120, 1997

[41] Norman J. Rohrer, et al, "A 64-bit Microprocessor in 130nm and 90nm

Technologies with Power Management Features," IEEE Journal of Solid-State

Circuits, Vol. 40, No. 1, pp. 19-27 Jan. 2005

[42] Masatoshi Imai, et al, "A 109.5mW 1.2V 600Mtexel/s 3-D Graphics Engine," in

Digest of Technical Papers of IEEE International Solid-State Circuits Conference, pp.

332-333, 2004

[43] Donglok Kim, et al, "Data Cache and Direct Memory Access in Programming

Media Processors," IEEE Micro, Vol. 21, No. 4, pp. 33-42, Jul. 2001

[44] Brucek Khailany, "Imagine: Media Processing with Streams", IEEE Micro, Vol.

Bibliography 99

21, No. 2, pp. 35-46, Mar. 2001

[45] William J. Dally, "Merrimac: Supercomputing with Streams," in Proceedings of

ACM/IEEE Supercomputing (SC) 2003

[46] Michael B. Taylor, et al, "The RAW Microprocessor: A Computational Fabric

for Software Circuits and General-purpose Programs," IEEE Micro, Vol. 22, No. 2,

pp. 35-46, Mar. 2002

[47] Ian Buck, et al, "Brook for GPUs: Stream Computing on Graphics Hardware," in

Proceedings of ACM SIGGRAPH, 2004

[48] John D. Owens, et al, "Polygon Rendering on a Stream Architecture," in

Proceedings SIGGRAPH/Eurographics Workshop on Graphics Hardware, pp. 23-32,

2000

[49] Masoo Woo, et al, "OpenGL Programming Guide," 3rd edition, OpenGL

Architecture Review Board, Addison-Wesley, 1999

[50] Kurt Akeley, "Buffer Objects," presented at Game Developer Conference 2003,

March, 2003

Acknowledgement

감사의 글

짧지 않은 대학원 생활을 돌이켜 보면 힘들 때 마다 용기와 지혜를 주신 많,

은 분들이 생각납니다 년 전 처음 실험실 문을 열고 들어올 때부터 지금까. 6 ,

지 한결같은 지지와 정성으로 제가 많은 것을 배워 스스로 나아가도록 지도
해 주신 유회준 지도교수님께 먼저 이 지면을 빌어 머리 숙여 감사의 마음을
전합니다 그리고 이 논문이 완성되도록 많은 지도와 조언을 해주신 김성대.

교수님 나종범 교수님 박인철 교수님 그리고 김재민 교수님께도 감사의 마, , ,

음을 전합니다.

세계 최고의 엔지니어가 되기 위해 인생의 가장 아름다운 시기를 함께 보내
며 많은 고민을 함께 하고 더 많은 기쁨을 함께 나누었던 반도체 시스템 연
구실의 가족들에게 깊은 감사를 드리며 제 자신이 그 일원이었다는 점이 무,

엇보다도 자랑스러웠다고 말씀드리고 싶습니다 석사 신입생 때부터 학문에.

대한 지식 뿐 아니라 엔지니어가 갖추어야 할 수많은 가치를 애정으로 일깨
워 준 존경하는 선배 람찬이 형 그리고 이번 칩을 만들면서 힘든 시기를 같, ,

이 해쳐나가며 인생에 대한 많은 고민을 함께 해 준 세중이 형에게 감사의
마음을 전합니다 그리고 제 밑에서 누구보다도 많은 노력을 보태준 후배 정.

호에게도 부족한 선배로서 매우 고마웠다는 말을 전하고 싶습니다 일일이.

이름을 열거하여 표현하기에는 너무나 많은 도움을 준 연구실의 선배님들,

동기들 그리고 후배들에게 앞으로 더 넓은 세상으로 나아가 실험실에서의 가
슴 벅찬 기억을 뒤로 하며 더욱 노력하는 엔지니어가 되겠다는 다짐을 드립
니다.

고등학교 시절부터 힘이 되어준 경기과학고등학교 자랑스러운 기 친구들13

Acknowledgement

에게도 감사의 마음을 전합니다 평생을 두고 힘이 되어줄 성현이 이제 새로. ,

운 세상으로 자신의 무한한 능력을 보여줄 도헌이 그리고 이름 하나 하나를
부르면 우리들의 추억들이 가슴을 따뜻하게 해주는 소중한 분들 모두 제게,

너무나도 귀중한 친구들입니다.

철없는 막내 동생을 특별한 사랑으로 많은 기회를 양보하면서 저를 아껴준
큰 누나와 작은 누나 그리고 친형처럼 보살펴 주신 두 분 매형께도 감사의,

마음을 전합니다 끝없는 사랑과 헌신으로 저를 있게 하시고 삶의 의미가 되.

어주신 아버지 어머니께 세상의 글로 표현할 수 없을 만큼 감사의 마음을 전,

합니다 마지막으로 하늘에 계신 할아버지께 감사의 마음을 전합니다. .

Dept. of EECS, KAIST, 373-1, Guseong-dong, Yuseong-gu, Daejeon, Korea, 305-701
Contacts: +82-42-869-8068, sohnjuho@eeinfo.kaist.ac.kr

JU-HO SOHN

2006-05-07

sohnjuho@eeinfo.kaist.ac.kr

Education

Korea Advanced Institute of Science and Technology (KAIST)

 - Full Scholarship from KAIST

2003/03 ~ 2006/08 Ph.D. in Electrical Engineering

Dissertation: A Low Power Programmable 3D Graphics Processor with Fixed-point

SIMD Vertex Shader

2001/03 ~ 2003/02 M.S. in Electrical Engineering

Dissertation: Design and Optimization of Geometry Acceleration for Portable 3D

Graphics

1997/03 ~ 2001/02 B.S. in Electrical Engineering – Summa Cum Laude

 Major: Electrical Engineering, Minor: Physics

 Overall GPA: 3.95/4.30, Major GPA: 3.87/4.3

Working Experience

Korea Advanced Institute of Science and Technology (KAIST)

2001/03 ~ Present Research Assistant – Perform research mainly focused on various aspects of

circuits, architecture and system design, chip and software implementation. Major

research area includes mobile 3D computer graphics.

2001/03 ~ Present Teaching Assistant – Assistant teaching for Microelectronics Circuits, Computer

Architecture, SoC Design Course

Research Projects

DA (Digital Accessory) Project

Development of 3D Graphics Accelerator IP for Mobile Application Processor SoC

Sponsored by Samsung Electronics

2005/09 ~ 2006/08 Technical Advisor

2004/09 ~ 2005/08 Chief Researcher, Team Leader

Responsible for Software Graphics Library and Platform Development

Dept. of EECS, KAIST, 373-1, Guseong-dong, Yuseong-gu, Daejeon, Korea, 305-701
Contacts: +82-42-869-8068, sohnjuho@eeinfo.kaist.ac.kr

2003/09 ~ 2004/08 Responsible for Full Chip Architecture Design and Backend Process

 Responsible for Programmable Graphics Engine RTL Design

2003/03 ~ 2003/08 Responsible for ARM10 Compatible RISC Processor RTL Design

MobileGL-C1

Development of 3D Graphics Library for Wireless Cellular Phones

Sponsored by MCRES

2004/03 ~ 2004/08 Responsible for Library Specification and Code Optimization for ARM7/ARM9

RAMP (RAM Processor) Project

Development of Application Specific Embedded Memory Logic Design Technology

Sponsored by Korea Ministry of Science and Technology, Korea Ministry of

Commerce, Industry and Energy

2002/10 ~ 2003/02 Responsible for Evaluation Platform Development

2002/06 ~ 2002/09 Responsible for Software Graphics Library Development

2001/09 ~ 2002/05 Responsible for Buffer Controller RTL Design and SRAM Full-custom Design

X-Switch (Extra High Speed Switch) Project

Development of Hardwired Network Processor using Embedded Memory Process

Sponsored by Samsung Electronics

2001/03 ~ 2001/08 Responsible for ARM7 Compatible RISC Processor Design Using SystemC

International Journal Papers (First-authored Papers Only)

JSSC A 155mW, 50Mvertices/s Graphics Processor with Fixed-point Programmable

2006 Vertex Shader for Mobile Applications

 Ju-Ho Sohn, Jeong-Ho Woo, Min-Wuk Lee, Hye-Jung Kim, Ramchan Woo and

Hoi-Jun Yoo

IEEE Journal of Solid State Circuits, Vol. 41, No. 5, May 2006

COMM Low Power 3D Graphics Processors for Mobile Terminals

2005 Ju-Ho Sohn, Yong-Ha Park, Chi-Weon-Yoon, Ramchan Woo, Se-Jeong Park and

Hoi-Jun Yoo

IEEE Communications Magazine, Vol. 43, No. 12, December 2005

International Conference Papers (First-authored Papers Only)

DATE Design and Test of Fixed-point Multimedia Co-processor for Mobile

2006 Applications

Dept. of EECS, KAIST, 373-1, Guseong-dong, Yuseong-gu, Daejeon, Korea, 305-701
Contacts: +82-42-869-8068, sohnjuho@eeinfo.kaist.ac.kr

 Ju-Ho Sohn, Jeong-Ho Woo, Jerald Yoo and Hoi-Jun Yoo

 Design, Automation and Test in Europe, 2006

ESSCIRC A Fixed-point Multimedia Co-processor with 50Mvertices/s Programmable

2005 SIMD Vertex Shader for Mobile Applications

 Ju-Ho Sohn, Jeong-Ho Woo, Ramchan Woo and Hoi-Jun Yoo

 IEEE European Solid-State Circuits Conference, 2005

ISSCC A 50Mvertices/s Graphics Processor with Fixed-point Programmable Vertex

2005 Shader for Mobile Applications

 Ju-Ho Sohn, Jeong-Ho Woo, Min-Wuk Lee, Hye-Jung Kim, Ramchan Woo and

Hoi-Jun Yoo

IEEE International Solid-State Circuits Conference, 2005

HWWS A Programmable Vertex Shader with Fixed-point SIMD Datapath for Mobile

2004 Applications

 Ju-Ho Sohn, Ramchan Woo and Hoi-Jun Yoo

 ACM SIGGRAPH/Eurographics Workshop on Graphics Hardware, 2004

ISCAS Optimization of Portable System Architecture for Real-Time 3D Graphics

2002 Ju-Ho Sohn, Ramchan Woo and Hoi-Jun Yoo

 IEEE International Symposium of Circuits and Systems, 2002

Patents

1. Apparatus for Accelerating Multimedia Processing by Using Co-processor

Ju-Ho Sohn, Ramchan Woo, Hoi-Jun Yoo

Korean Patent Number: 1004659130000

2. Apparatus for Accelerating Multimedia Processing by Using Co-processor

Ju-Ho Sohn, Ramchan Woo, Hoi-Jun Yoo

Korean Patent Number: 1004636420000

3. Apparatus for Controlling Buffer Memory in Computer System

Ju-Ho Sohn, Ramchan Woo, Hoi-Jun Yoo

Korean Patent Number: 1004480710000

Research Interests

1. Mobile 2D/3D Graphics Architectures and Their Software/Hardware Implementations

2. Multimedia Signal Processing in Consumer Electronics

2. Computer Architecture (Streaming Processor, Embedded RISC Processor)

Dept. of EECS, KAIST, 373-1, Guseong-dong, Yuseong-gu, Daejeon, Korea, 305-701
Contacts: +82-42-869-8068, sohnjuho@eeinfo.kaist.ac.kr

Skillful Tools

1. High-level Design: C/C++, JAVA, SystemC

2. Graphics Library: OpenGL / OpenGL-ES

3. Logic Design: Verilog-XL, Synopsys Design Compiler, Astro P&R Tools

4. Circuit Design: Cadence OPUS, EPIC nanosim, Hspice, Calibre DRC/LVS

5. Software Programming: Windows MFC, Windows WDM, Windows COM+, Linux QT, ARM ADT/ADS

Language

1. Korean as a Domestic Language

2. Proficient English

3. Beginning Japanese

