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A 4-Gb/s CMOS Clock and Data Recovery Circuit
Using 1/8-Rate Clock Technique
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Abstract—A 4-Gb/s clock and data recovery (CDR) circuit Decision 14 2D

is realized in a 0.25um standard CMOS technology. The CDR Circuit [ 7| DEMUX |—>D;

L . : I . A A —>D,
circuit exploits 1 /8-rate clock technique to facilitate the design of Y $
a voltage-controlled oscillator (VCO) and to eliminate the need i L
of 1:4 demultiplexer, thereby achieving low power consumption. - © ‘ :IDPhase | Charge | 1) oe byl veo Frequency

. . N ! . . i etector| Pump Divider

The VCO incorporates the ring oscillator configuration with 5

active inductor loads, generating four half-quadrature clocks. The [ck

VCO control line comprises both a programmable 6-bit digital
coarse control and a folded differential fine control through
a charge-pump and a low pass filter. Duty-cycle correction of ) .
clock signals is obtained by exploiting a high common-mode Fig-1. Conventional architecture of a full-rate CDR.

rejection ratio differential amplifier at the ring oscillator output.

A 1/8-rate linear phase detector accomplishes the phase error or SiGe HBT technologies that provide high-speed and inher-
detection with no systematic phase offset and inherently performs ently |ow-noise characteristics. However, these materials are

the 1:4 demultiplexing. Test chips demonstrate the jitter of the : i : o
recovered clock to be 5.2 ps rms and 47 ps pk-pk fo2®! — 1 still costly and dissipate high power [11]-[14]. Thus, CMOS

pseudorandom bit sequence (PRBS) input data. The phase noise isteCh”_O'OQieS bec_ome very attractive_ dl_Je to low-cost, low-power,
measured to be—112 dBc/Hz at 1-MHz offset. The measured bit and high-integration-level characteristics [15]-[17]. These char-
error rate is less than10—° for 23! — 1 PRBS. The chip excluding acteristics are very desirable for short-haul applications such as
output buffers dissipates 70 mW from a single 2.5-V supply. backplane interconnections or chip-to-chip interconnects [18].
Index Terms—Clock and data recovery, CMOS, linear phase  This paper presents a 4-Gb/s CDR circuit implemented in a
detector, optical receivers, voltage-controlled oscillator (VCO), 0.25um standard CMOS technology. The proposed CDR ar-
1/8-rate clock. chitecture incorporates a number of circuit techniques such as
1/8-rate clock technique, voltage-controlled oscillator (VCO)
I. INTRODUCTION with active inductor loads and duty-cycle correction buffers,
_ ) and1/8-rate linear phase detector (PD) functioning 1:4 demulti-
T HE COMPUTING performance of a single chip hag)exer (DEMUX). The CDR circuit eliminates the need of a 1:4
increased exponentially due to the advance of seMiEMuX block, thereby achieving lower power consumption
conductor technology. Accordingly, the improvement of I/Qnq smaller active area than other configurations in [13]-[15].
bandwidth is indispensable. High-speed serial data links pigrsq it facilitates the integration of the high-speed CDR circuit
vide multigigabit bandwidth with reduced system complexityith other digital circuitry on a chip, and thus significantly re-
and cost [1]-3]. Particularly, the optical fiber links providey,ces the chip cost. Hence, the proposgstrate CDR circuit
efficient solution for gigabit data rate, while traditional coppeg syitable for short-haul optical communication applications or
links hardly sustain increasing data rates due to its physiggl,_cost optical interconnects.
limitations [4], [5]. Yet the optical fiber link is still costly, and e architecture of the /8-rate CDR circuit is described
therefore, the physical layer designs of optical fiber links (e.gn section I1. Sections 1l and IV explain the mechanism of
optical receivers) are required to be based on low-cost apgh main building blocks such as VCO ang8-rate linear PD,

low-power strategies [6]-{10]. o . respectively. Measurement results are presented in Section V.
The clock and data recovery (CDR) circuit is a crucial e"?:inally the conclusion follows in Section VI.

ment in optical receivers. It must extract pure clocks from the
corrupted input data and regenerate clean data output by the II. 1/8-RATE CDR ARCHITECTURE
extracted clocks. For these purposes, the CDR circuits have

been dominantly implemented in 1ll-V materials, Si bipolar, Fig- 1 shows the conventional full-rate CDR circuit, con-
sisting of four blocks: a clock recovery circuit, a decision

circuit, a frequency divider, and a 1:4 DEMUX. Typically, the
clock recovery circuit employs the phase-locked loop (PLL)
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Fig. 2 S_imulation r_esult of a differential ring oscillator with resistive loads In this CDR, the clock frequency is reduced by a factor of
and isolation buffers in a 0.2bm CMOS technology. . T . . .
eight. Thus, the reliability of the VCO is considerably improved,
even at the 4-Gb/s data rate. Also, the CDR circuit merges the

frequency of a VCO in a 0.2pm CMOS technology, where four functional blocks (a clock recovery circuit, a decision cir-
the VCO is designed as a simple differential ring oscillatatuit, a frequency divider, and a 1:4 DEMUX) into a single block.
with resistive loads and isolation output buffers. The maximulVhen the full-rate 4-Gb/s incoming NRZ data stream enters the
oscillation frequency of the three-stage VCO reaches 2 GHZs-rate PD, the phase of input data are compared with those of
and then drastically falls with the increase of the delay stag@e four half-quadrature clock€K,-CK3) of the VCO. Then,
Since the VCO should drive the following decision circuih data transition (DT) signal and a clock transition (CT) signal
and the frequency divider, its oscillation frequency can be leage generated in the PD. Simultaneously, the input data is de-
than 2 GHz even with three delay stages. Similar results weriltiplexed into the four 1-Gb/s outputs. Each data output dif-
reported in [20]. Conclusively, the conventional full-rate CDRers by a half-quadrature phase {#®ecause it is retimed by
architecture can hardly overcome such physical limitationise four half-quadrature clocks, respectively. Since the DT and
of a submicron CMOS technology and achieve high spe@f signals pass through a CP and a LPF, the difference between
(>4-Gbls) operations. the average values of DT and CT signals is linearly converted to

Novel circuit techniques have been suggested suttte control voltage of the VCO. If the difference of the average
as half-rate clock [16], [17] or oversampling [19]. Thevalues becomes zero, the loop enters the locking state.
half-rate-clock technique reduces the clock frequency by aThel/8-rate PD is designed to be alinear type so as to obtain
factor of two. Yet the clock frequency of 2 GHz is very close temaller output jitter than a bang-bang type. The oscillation fre-
the physical limit of the 0.25:m CMOS technology. Therefore, quency of the VCO i4 /8 times lower (500 MHz) than the data
the 4-Gb/s operation with low jitter characteristic is difficult tarate so that the VCO can provide sufficient tuning range and tol-
achieve. Also, the reliability of the VCO cannot be guaranteedtate the temperature and process variations efficiently [16]. It
under the process, voltage, and temperature (PVT) variatisrknown that switching noise of a VCO traverses through the
with the increasing data rate and the decreasing supply voltaggmmon substrate of a single chip and becomes detrimental to
According to [17], a VCO realized in a 0.18n CMOS noise-sensitive analog blocks, e.g., transimpedance amplifiers
technology demonstrated more reliable operation at a 2.5#Voptical receivers [6]. However, it is reported in [21] that the
supply voltage than the nominal 1.8 V. substrate noise voltage scales down with the square root of fre-

Meanwhile, an oversampling technique [19] is very attractiv@iency. Thus, the substrate noise effect can be significantly sup-
to design a reliable VCO because the clock frequency can bepéessed by lowering the operating frequency.
duced by a factor of four or more. However, it produces consid- With the proposed /8-rate technique, the CDR circuit re-
erable quantization jitter in the data eyes due to the samplirj¢ces the substrate noise effect, thereby providing reliable op-
at fixed points that incurs high output jitter and it mandategrations for optical receiver applications.
highly precise clock phase control. Also, extra decision logic
is required for post-processing, leading to a large active area
and high power consumption. To alleviate the above tradeoffs, . VCO
the 1/8-rate clock technique is proposed in this paper. Fig. 3
shows the architecture of the proposets-rate CDR circuit, For CDR applications, two configurations of VCOs are
consisting of al/8-rate linear PD, a CP, a second-order LPRyidely exploited: ring oscillators and LC-tank oscillators [22].
and a VCO. All building blocks are designed to be fully dif-The ring oscillator provides wide tuning range and can generate
ferential in order to minimize the crosstalk and common-modenumber of clocks with different phases. However, it produces
noise. The clock and data signals have low-voltage swingsrefatively high phase noise and operates only at low frequencies
about 600 mVp-p, not only to increase its speed, but also to rse to its low-quality (@) factor. Meanwhile, theLC-tank
duce power consumption. Output buffers (not shown in Fig. 8scillator achieves stable operations at higher frequencies,
employing the open-drain differential pair configuration driveroviding less phase noise. However, its tuning range is very
the off-chip 509 terminations and help the measurements ofarrow. Also, on-chip spiral inductors have a law factor
the recovered half-quadrature clocks and demultiplexed datgtypically 3-5) and consume a large active area. Hence, we
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L] ® M, ] _-||:M1o Fig. 5 shows the block diagram and the implementation of
T | I o the feedback isolation buffer with the function of DCC. It com-
- = prises two amplifier stages i.e., an input differential amplifier
- ®) (M;-M,) and aresistive feedback amplifiévlf ,-M2, R1-R>)

in parallel with an auxiliary high common-mode rejection ratio
Fig. 5. (a) Block diagram of feedback isolation buffer with DCC. (b)(CMRR) feedback amplifier {f5-Mi,). The DCC function is
Transistor-level implementation of Fig. 5(a). incorporated by exploiting a high CMRR feedback loop. The

resistive feedback loop extends the bandwidth in order to drive
employ the active inductor loads to acquire wide tuning rangerge loads facilely. According to HSPICE simulations, the feed-
moderately highy) factor, and small area. back isolation buffer achieves almost 99% of DCC.

The proposed ring oscillator employs half-quadrature tech-Fig. 6 shows the schematic diagram of a single delay stage
nique to generate four phase clocks. Fig. 4 shows the bloskthe VCO, consisting of a coarse tuning stage with a pro-
diagram of the half-quadrature differential ring oscillatorgrammable 6-bit digital control word and a fine-tuning stage
consisting of four delay stages and four isolation buffers withith a folded differential pair with source degeneration. The
duty-cycle correction (DCC). Each delay stage producespeogrammable 6-bit coarse control word, which is externally
half-quadraturd /8-rate clock with 48 phase difference. DCC programmed, can widen the limited capture range that is due to
function is necessary because utilizing both clock edges inctite narrow loop bandwidth of the CDR for lowering input noise
the duty-cycle distortion in the retimed data [17]. effect. The coarse tuning is digitally controlled by varying the

Generally, there are two approaches to obtain the DCC [28]il currents, as illustrated in Fig. 6.

One is to add a divide-by-two circuit at the output of the VCO. Each delay stage exploits a pair of active inductor loads
However, it requires the VCO to operate at twice the clock fréR,-Mgy and Rs-M;). Since the active inductor loads result
quency. The other is to exploit an extra feedback loop. Since timelarger voltage drop than the passive inductors and mandate
loop stabilization is difficult to obtain, the DCC may become inhigher supply voltage, a folded NMOS differential pair of
correct at high frequencies. If the VCO operates at low frequeif;—g is adopted in the fine tuning stage to alleviate the voltage
cies, the feedback isolation buffer can achieve the stable auxitadroom effect. Source degenerat{@iy, R4) is used in the

iary feedback operation and thus the reliable DCC. The latterd#ferential pair to achieve low VCO gain that results in wide
feasible with the proposed VCO due to the law&-rate) clock. linearity.
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Fig. 8. Folded current-mode logic (CML) family: (a) folded D-latch; (b) folded MUX; and (c) folges.

IV. 1/8-RATE LINEAR PD signal is produced byoring two consecutive bits of the input
data as described in the following

Fig. 7 shows the block diagram of the proposets-rate DCTy = CK3(Q1 © Q3) + CK3(Qo © Q2)
linear PD. It consists of eight data sampling latches, adataand ~ DCT; = CKo(Q3 ® Q5) + CKo(Q2 @ Q)
clock transition (DCT) detector, and a DCT generator. The DCT., = CK; (0= & + CK, o
1/8-rate linear PD accomplishes three tasks with no systematic c 2 _c H(Qs @ Q) C_I(Q4 Qo)
offset: data transition detection, linear phase error detection, DCT; = CKa(Qr @ Q1) + CK2(Qs ® Qo)

and data reg_eneratlon. I_n the Iatc_h stage, th? Incoming N.Bv%erer (k=0,..., 7) represents the output of a data sam-
data stream is sampled in each bit at every rising and falll?ﬂng latch in Fig/ 7
edge of the four half-quadrature clocks. Then, the DCT detecto -

I. . .
generates the four DCT signaBQ'T,-DCT;) and provides The DT and CT signals are generated by toggling the four
the retimed data outputlfy-D3) simultaneously which are

DCT signals at every consecutive rising and falling edge. That
the 1:4 demultiplexed data. With the incoming four DC

_I'Ls, the DT and CT signals appear at every data transition. The
signals, the DCT generator produces the DT and CT signal

sptllélseWidth of the CT signal is linearly proportional to the fre-
determine the phase error between the data and the clock. quency of the half-quadrature clock, whereas that of the DT

signal is unchanged if the input data rate is fixed. Therefore,
The PD employs the differential configuration to achievghe phase error detection is obtained by comparing the average
stable operations and wide output swings even at low suppiiue of the DT signal with that of the CT signal.
voltages. It also exploits the current-mode logic (CML) config- | the locked condition, the pulse widths of the DT and CT
uration for high-speed operations. By rendering the input aggynals will be equal to that of the input data. The phase error
output common-mode (CM) levels equal, it acquires the widgt the DT and CT signals is converted to a differential fine con-
input CM range with no level shifters. In each folded CML, theyg| yoltage of the VCO through the CP. Fig. 10 shows the tran-
input and output CM levels are equal to be a half of the suppystor-level implementation of the fully differential CP. The CP
voltage. The schematic diagrams of the folded CML fam")émploysacommon-mode feedback (CMFB) to fix the CM level
including a folded D-latch, a folded MUX, and a fold&dR,  of the VCO control line and to achieve the stable frequency ac-
are shown in Fig. 8. quisition. Also, large-size transistors are used to minimize the
Fig. 9 illustrates the operation of the/8-rate linear PD. effect of mismatch between the output currents.
Whenever the transition of the input NRZ data occurs, all DCT Fig. 11 shows the simulation results of thgs-rate linear PD
signals go high. The falling edges &fCT,, DCT,,DCT,, characteristic, indicating the difference of the average values
andDCTj signals are triggered by the rising and falling edgesf the DT and CT signals as a function of the delay between
of CK3, CKyp, CK;, andCKs, respectively. Consequently, thea half-quadrature clock and the input data. It is seen that the
DCT signals appear at every data transition and each DC/8-rate linear PD achieves the linear range of about 160 ps.
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E;:“— CMFB Fig. 12. Chip microphotograph of tHg/8-rate CDR.

l LPE V. MEASUREMENT RESULTS

AV

o—l I-X-II‘—‘IJ |:|I—o Test chips were fabricated in a 0.28a standard CMOS tech-
CT DT

o nology with four metal layers and a single poly. Fig. 12 shows
the chip microphotograph, where the core consumes the area of
0.9x 1.0 mn?. For facilitating the measurements, a test chip
was mounted on a FR-4 PC board by using bondwires.

Fig. 13 shows the measured eye diagrams of the four 1:4 de-
multiplexed 1-Gb/s data outputs for 4-G¥' — 1 pseudo-
random bit sequence (PRBS) input data. Each data output ex-

The half-rate linear PD [17] and the Hogge PD [24] canndiibits almost half-quadrature phase difference. Fig. 14 shows

avoid the inherent systematic phase offset between the avertdgerecovered half-quadrature clocks, where a slight phase offset

values of the error and the reference signals, which may be atcurs between the adjacent waveforms. It may be attributed
tributed to the asymmetric path in the generation of both signals.the mismatch in the output buffer stage and also possibly

Thus, there is significant static phase offset between the cldtle parasitics on the test board. Fig. 15 shows the spectrum of

and the input data even in locked condition. However, the prthie recovered clock, where the phase noise is measured to be

posed linear PD has the symmetric path and the same propagai2 dBc/Hz at 1-MHz offset. Also, the jitter histogram of the
tion delay in the generation of both DT and CT signals. Thereecovered clock is shown in Fig. 16, indicating the clock jitter to
fore, no systematic phase offset occurs between the clock &®d6.5 ps..s and 47 psi_px for 23! — 1 PRBS input data. Con-

the data. sidering the test equipment jitter of 3.9,ps, the pure clock

In addition, the proposed PD can improve the linearity dygter is 5.2 ps,,s. In addition, the bit error rate (BER) of the
to the considerably lower operating frequency than the data r&@BR circuit is measured to be less tHa ¢ for 23! — 1 PRBS.
and therefore operate at sufficiently higher speed. The fine-tuning gain of the VCO is measured to be 75 MHz/V.

IR

|u
I

Fig. 10. Fully differential CP.
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VI. CONCLUSION

Mkrl 500.00 MHz
pef R — A novel CDR circuit withl /8-rate clock technique is realized
s in 0.254m standard CMOS technology. Exploiting thé&s-rate
4/ linear PD and the VCO with active inductor loads and duty-
cycle correction buffers, it achieves the 4-Gb/s operation with
5.2 PSms jitter for 23! — 1 PRBS and dissipates 70 mW from
a single 2.5-V supply. Hence, the CDR circuit is suitable for
high-speed and low-power optical communication applications
or low-cost optical interconnects.
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