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Abstract — A low-power three-dimensional (3-D) graphics  

rendering engine with lighting acceleration is designed and 
implemented for handheld multimedia terminals. The lighting 
unit is hardware implemented and integrated into the chip for 
the low-power acceleration of the 3D graphics applications. 
We adopt the following three steps to handle the memory 
bandwidth problem for rendering operations. I) We find 
bilinear MIPMAP is the best texture filtering algorithm for 
handheld systems based on our developed energy-efficiency 
metric. With this observation, we adopt bilinear MIPMAP for 
our texture filtering unit, which requires only 50% of texture 
memory bandwidth compared with trilinear MIPMAP filtering, 
II) We put the depth test operation into the earlier stage of the 
graphics pipeline, which eliminates texture memory accesses 
for invisible pixels, III) We develop a power-efficient small 
cache system as the interface to rendering memory. The 
accelerator takes 181K gates and the performance reaches 
20Mpixels/s. A test chip is implemented with 1-poly 6-metal 
0,18um CMOS technology. It operates at the frequency of 
20MHz with 14.7mW power consumption1. 
 

Index Terms — 3D Graphics, Lighting, Rendering Engine,  

Low Power, Handheld System. 

I. INTRODUCTION 

As the mobile electronics market increases rapidly, third-
generation (3G) multimedia terminals such as cellular phones 
and personal digital assistants (PDAs) are becoming more 
popular. They already require real-time multimedia 
applications such as MP3, MPEG-4 audiovisual codec and 
even three-dimensional (3-D) computer graphics.  

For mobile wireless applications, power consumption is one 
of the main problems due to their limited battery lifetime. 
Moreover, since real-time 3-D computer graphics inherently 
requires extremely large computing power and memory 
bandwidth, the realization of a 3-D graphics system in a 
mobile computing environment is a challenging problem. 

Recently, there have been several researches on the low 
power 3-D graphics for hand-held devices, including hardware 
accelerators [1]-[4] as well as software libraries [5]-[6]. In 
hardware acceleration approaches, even if the rendering stage 
is accelerated by hardware, the geometry stage is still mainly 
implemented with software [6] or with limited hardware 
function of arithmetic units [1], which leads to extra power 
overhead. In ordinary cases for wireless applications, the RISC 
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based application processors (AP) [7] or digital signal 
processors (DSP) [8] are used to process geometry stage 
computing. Although their simple datapath such as multiply-
and-accumulate (MAC) unit is suitable for the transform 
operation of geometry stage computing, they can not provide 
the required performance of lighting or vertex shading 
operations, which require complex special functions like 
reciprocal square root or powering operation in geometry 
processing. 

In this work, we designed and implemented a 3-D graphics 
rendering engine augmented with lighting capability in order 
to increase its performance and power efficiency. The 
architectures of the complex reciprocal square root (RSQ) and 
the powering (POW) units, required by the OpenGL lighting 
equation are optimized for the lighting engine of the real-time 
3-D graphics applications on handheld devices. 

The requirement of huge memory bandwidth required for 
texture mapping, depth test and alpha blending is critical for a 
high rendering performance. Previous works used embedded 
memory as a solution to this problem [3][4]. However, 
integrating large memory on a single die with logics brings 
increases of chip size and fabrication cost. As an alternative 
solution, in this architecture, three kinds of mechanisms are 
adopted to reduce external memory bandwidth requirement 
effectively for the rendering operations. The texture filtering 
algorithms are analyzed and the bilinear MIPMAP filtering [9] 
is adopted for the reduced memory bandwidth and the best 
energy efficiency. Moreover, the depth test is placed into the 
earlier stage of the graphics pipeline to remove unnecessary 
texture memory access for invisible pixels from the viewer. 
Also, a cache system for the rendering memory transactions is 
introduced: texture cache, depth cache and pixel cache as the 
interface to texture memory, depth buffer and frame buffer, 
respectively. Although large cache memory can reduce the 
miss rate significantly, it takes large area and its parallel search 
of large number of tags leads to huge power consumption. 
Therefore, a small size cache system is implemented to reduce 
power overhead. 

With all of the features mentioned above, the accelerator 
reduces computing overhead from the AP by offloading 
lighting and rendering computations and consequently realizes 
low-power consumption. 

This paper is organized as follows. In the next section, we 
present target specifications of a 3-D accelerator for the 
current target 3G systems. In section 3, we explain the detailed 
architecture of the rendering engine with the proposed lighting 
engine and memory bandwidth reduction schemes to attain 
high performance and low power consumption. 
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Implementation results are presented in section 4. Finally we 
conclude in section 5. 

II. TARGET SYSTEM 

Fig. 1-(a) shows a 3G system that contains a RF frontend, a 
baseband modem for communication, an application processor 
for multimedia processing, memories, and peripherals. There 
are three kinds of requirements to be met for the 3-D graphics 
to be realized in these systems, i.e. the performance of 3-D 
graphics, memory bandwidth, and power consumption. In this 
section, we will cover the specific requirements for the above 
issues. 
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Fig.  1. Examples of target 3G system. (a) Conventional 3G system, (b) 

3G system with RamP-Lite. 

 

A. Performance 

We analyzed the performance of 3-D graphics pipeline to 
identify the system level performance need. In this analysis, we 
used our developed 3-D graphics library, Mobile-GL, which is 
compatible with OpenGL-ES [10] and optimized with the 
fixed-point arithmetic for the 3-D graphics pipeline [11].  

Fig. 2-(a) shows the rendering performance when the 3-D 
graphics pipeline implemented with Mobile-GL runs on the 
400MHz PXA-255 application processor [7]. For QVGA 
(240×320) screen resolution, pixel fill rate of 11.5Mpixels/s is 
required for 30 frames/s and average depth complexity of five, 

which is the usual case for the handheld 3-D graphics 
applications. However, the graph shows the performance is far 
below the requirement. To solve this problem, the rendering 
stages should be accelerated since the rendering stage takes 
77% of processing power in the 3-D graphics pipeline. 

Although the rendering stages are accelerated by hardware, 
the geometry stage is still the next performance bottleneck, 
which is described in Fig. 2-(b). Under the same drawing 
complexity with rendering operations, the geometry stage 
should process 1.15Mpolyons/s since the average pixel count 
in a polygon is about ten [11]. However, the polygon 
processing rate is still under the required performance. 

This problem can be solved if the lighting part, which takes 
about 83% of the geometry computation, is also hardware 
accelerated. This is shown in Fig. 2-(c).  

B. Memory Bandwidth 

In general, 3-D graphics rendering requires a huge amount 
of memory bandwidth for rendering operations like texture 
mapping, depth test and alpha blending. Recently, mobile 
DDR SDRAM can provide maximum bandwidth of 400MB/s, 
but less than 50% is available due to the bus contention by 
multiple IPs in current handheld systems [12]. Also, the vertex 
data transfer from the host processor to rendering engine takes 
about 40MB/s. Therefore, less than 150MB/s of the memory 
bandwidth can be assigned to pure rendering operations. 

However, the rendering engine with trilinear MIPMAP 
filtered texture mapping operation [9], which is an ordinary 
case for PC graphics systems requires 440MB/s for its 
rendering performance of 20Mpixels/s. Therefore, we have to 
find a proper texture filtering algorithm for our target systems. 

C. Power Consumption 

The most important design factor for the handheld devices is 
the low power consumption because of their limited battery 
lifetime. Since current Li-ion battery can supply 2000mWh, 

system power budget for LCD, CPU, memory and others is 
only about 800 mW for a 2~3-hours [13]. Under this situation, 
only 200~300 mW can be allocated to the 3-D rendering 
engine including the rendering memories, thus, just tens of 
milliwatts can be assigned to the 3-D rendering engine core. 
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Fig.  2. Performance graph. (a) rendering performance, (b) geometry processing performance, (c) geometry processing performance when lighting 

is hardware accelerated.. 
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To realize the 3-D graphics on handheld systems under 

these system constraints mentioned above, we have to design a 
hardware accelerator for rendering and lighting operations to 
meet the performance and power constraints. In this 
accelerator, we also need some kind of schemes to handle 
memory bandwidth requirements effectively. 

We propose a small power-efficient rendering engine, 
named as RamP-Lite, augmented with the lighting engine, the 
energy efficient texture filtering unit and the small cache 
system to realize the 3-D graphics on handheld devices under 
the constraints mentioned above. 

In the system configuration of Fig. 1-(a), our graphics 
accelerator can be attached as a companion chip to the 
application processor. Our goal is to offload the computation 
overhead from the application processor in processing real-
time 3-D graphics applications. Consequently, we can attain 
high performance and low power consumption by utilizing 
dedicated hardware for computation intensive operations. 

As a result, the remaining parts of the graphics pipeline such 
as transformation, clipping and projection can be easily 
implemented as software by utilizing the MAC unit of the 
conventional AP that is already installed in current handheld 
systems. The RamP-Lite resolves performance bottlenecks of 
the conventional 3-D graphics pipeline on handheld devices 
with minimal modifications to existing systems. Fig. 1-(b) 
shows the modification. 

III. 3D GRAPHICS ACCELERATOR 

In order to design a power-efficient rendering engine, we 
adopt several kinds of approximation techniques for the 
pipeline design at the cost of negligible image quality loss. 
Details of the techniques for lighting and texture filtering will 
be presented in the following sections. 

The pipeline of RamP-Lite is mainly composed of two parts: 
geometry and rendering stages. We mainly adopted the fixed-
point arithmetic units for the entire pipeline since they 
consume less power than floating point units [1][5][6]. Fig. 3 
shows the organization of the main pipeline. 

A. Lighting Engine 

In order to support lighting in a separated chip from the AP, 
where other parts of geometry computations are processed, 
conventional 3-D graphics pipeline dataflow [14] should be 
modified. Fig. 4 describes this modification.  

Although this modification is similar to the deferred lighting 
proposed in [15], the deferred lighting that processes lighting 
in the middle of the rendering process requires completion of 
lighting operation in one rendering cycle in order to preserve 
the throughput of the rendering engine. Moreover, they assume 
a software solution to the lighting engine, while our focus is on 
the hardware acceleration in the pipeline of current handheld 
system environment. 
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Fig.  3. The organization of RamP-Lite. 
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Fig.  4. Pipeline reordering. (a) Original 3-D graphics pipeline, (b) 

Proposed pipeline. 
 
Since the lighting stage is moved to a hardware accelerator 

(i.e. the next stage of projection), the parameters needed for 
lighting e.g. normal (N), view (V), light (L) vectors and 
material properties should be transferred to the accelerator. 
These parameters should bypass the projection stage on the 
application processor to insure that they are not distorted by 
the projection stage for correct lighting computation. 

We used two approaches to reduce the overhead from the 
hardware implementation since direct implementation of the 
lighting engine into the hardware requires too much area 
overhead. Firstly, we implemented the lighting pipeline stages 
with multiple cycle operations by folding the internal 
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arithmetic units three times. The rendering throughput 
degradation from this approach is negligible since less than 3% 
of triangles in a QVGA screen size are composed of less than 
three pixels from our statistics. On the other hand, every 
rendering pipeline stages proceed in one cycle to lower 
operating clock frequency without sacrificing the rendering 
performance for low power design. 

Secondly, we simplified the format of the lighting 
parameters into Q8.8 2  instead of direct implementation of 
Q16.16. We found that about 96% of the lighting parameters 
can be represented by Q8.8. The maximum errors are 1% for 
normal and view vectors, respectively, and 3% for light 
vectors with this representation.  
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Fig.  5. The pipeline of lighting engine. 

 
Once the lighting parameters are fed into the lighting engine, 

they pass through the pipeline shown in Fig. 5, which 
implements the OpenGL lighting equation [14]. Each stage 
proceeds in three cycles. The N,V,L vectors are normalized 
first and the half vector H is evaluated. The H vector is also 
normalized to evaluate the lighting equation. There are two 
special operations needed for the evaluation of this lighting 
equation, i.e. RSQ for the normalization of the vectors and 
POW for computation of the specular term. The functional 
units for these operations are shown in Fig. 6.  

Basically, the lighting parameters fed into the engine is 
managed and stored as fixed-point numbers. However, when 
special functions like RSQ or POW are necessary, the data is 
temporarily converted to floating point numbers since 
insufficient precision in the fixed-point datapath may result in 
severe artifacts when drawing large polygons. Then, the results 
of the operation return to fixed-point numbers. 

 

 
2  Qm.n represents the format of a fixed point number, where ‘m’ 

represents the number of bits used for integer part and ‘n’ represents for that 
of fraction part. 

..
.

..
.

Exponent

Mantissa

>> >> >>

MUL MUL MUL
LUT

12

3

17 17 17

29 29 29

29 29 29

9

33

C
o
n
v
e
rt

  
to

  
F

P

(Q17.16) (Q9.8)x2+y2+z2

..
.

..
.

Exponent

Mantissa

>> >> >>

MUL MUL MUL
LUT

12

3

5 6 5

18 19 18

5 6 5

16

{x,y}

5
1
2
 e

n
trie

s
7
2
5
 e

n
trie

s

1
x

xy

(a)

(b)

x y z

r g b

x y z

(Q9.8) (Q9.8)

(Q9.8) (Q9.8) (Q9.8)

r g b(Q0.5) (Q0.5) (Q0.5)

(Q0.5) (Q0.5) (Q0.5)

(Q0.5,Q7.4)

Exponent 5

Fig.  6. Special function units. (a) Reciprocal square root (RSQ) unit, (b) 

Powering (POW) unit. 
 
For the normalization operation, we used one precision-

controlled look-up table (LUT) for the RSQ and 3 multipliers 
and shifters for each vector component respectively. In the 
precision-controlled LUT, all leading zeros are eliminated and 
only meaningful 12-bit mantissa and a 3-bit exponent for 
corresponding fractional point locations are stored. The 
mantissa is used for the multiplier operand in evaluating the 
characteristic value of the RSQ result. The exponent is used 
for shifting the characteristic value to make the actual RSQ 
result.  

To address the LUT, the sum of square (SSQ) of each 
vector component is used. However, we do not directly supply 
the SSQ value as the address since 33-bit (Q17.16) SSQ value 
for the address requires overly large LUT. Therefore, we 
convert the SSQ to the floating point format, 6-bit exponent 
and 9-bit mantissa, by dropping all leading zeros and taking 
only the nine most significant bits (MSBs) for the address 
simplification. By using this 9-bit mantissa for the LUT 
address, 512-entry LUT with 12-bit mantissa and 3-bit 
exponent can be used. The 3-bit exponent from the LUT 
should be compensated with the 6-bit exponent from the 
floating point SSQ. 

For the powering operation, the architecture of the 
functional unit is basically similar to the RSQ unit. In this 
architecture, the simplification for the input value is also taken 
to reduce LUT size. Since the input range of the powering 
operation xy for OpenGL specular lighting is x∈[0,1] and 
y∈[0,128], we restricted the format of x and y as Q0.5 and 
Q7.4, respectively. Thus, 725-entry LUT with 12-bit mantissa 
and 3-bit exponent can be used for POW operation. 

These precision-controlled LUT based units save the power 
and the area of the lighting engine by 85% and 75%, 
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respectively, compared with the IEEE-754 single-precision 
floating-point units while delivering the required precision. In 
Fig. 7, a lit, smooth-shaded scene with different material 
properties for each part is rendered to show reliability of the 
proposed scheme. 

 

 
(a) 

 
(b) 

Fig.  7. Rendering effects for reduced precision. (a) Lighting with Q16.16, 

(b) Lighting with Q8.8. 

 

B. Rendering Engine 

As shown in Fig. 3, the rendering engine of RamP-Lite 
mainly consists of five stages. Each stage performs the 
rendering operations which include triangle setup, shading, 
texture mapping, depth test and blending.  

In RamP-Lite, we adopt three steps to reduce the external 
memory bandwidth for rendering operations. Since the texture 
mapping is the main source of memory bandwidth requirement, 
we mainly focus on the reduction of texture memory 
transaction. 

Firstly, we use bilinear MIPMAP filtering algorithm for 
texture filtering. Usually, high-end 3D graphics rendering 
engines adopt trilinear MIPMAP filtering to enhance their 
image quality extremely. However, it is too expensive for the 
handheld systems with small screen size since trilinear 
MIPMAP filtering requires large energy consumption as well 
as a huge amount of memory bandwidth, i.e. requiring eight 
texels for each pixel. Therefore, we should select a cost-
effective filtering algorithm for handheld systems. 

In order to find the proper one, we analyzed the energy 
efficiency of each filtering algorithm based on the energy 
consumption and image quality of scenes generated by them. 

The energy consumption is extracted from our simulator, 
which models the energy consumption for the capacitance of 
the external system bus and memory. The energy for each 
filtering algorithm is shown in Fig. 9-(a). We analyze the 
image quality based on the aliasing factor of the scene since 
texture filtering is for the antialiasing of a texture-mapped 
image. Therefore, we perform discrete cosine transform (DCT) 
for the test scenes to get the information of high-frequency 
factor in the scene that contributes to aliasing. The extracted 
frequency spectrum and its coefficient matrix are used for 
evaluating the image quality metric defined by us as in 
equation (1). We define the image quality of a scene as the 
sum of DCT coefficients weighted inversely proportional to 
their corresponding frequency. 
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The DCT results are shown in Fig. 8 and evaluated image 

quality indices are shown in Fig. 9-(b). To proceed the analysis, 
we define another term, the energy efficiency of a texture 
filtering algorithm as in equation (2). 
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In Fig. 9, we should notice that the energy consumption 

significantly increases, while the image quality does not 
increase so much when trilinear MIPMAP filtering is used. 
This means that the energy efficiency drops abruptly at the 
trilinear MIPMAP point, which is shown in Fig. 9-(c). 
Therefore, we adopt bilinear MIPMAP filtering which requires 
four texels for rendering one pixel. With this algorithm, we can 
reduce the external memory bandwidth requirement to 
280MB/s. 

In order to reduce the memory bandwidth requirement 
further, we moved the depth test stage to the earlier stage of 
pipeline before the texture mapping stage. In conventional 3D 
graphics, the depth test stage is located in the final stage of the 
pipeline, where it culls pixels invisible from the viewer and 
prevents it from being drawn into the frame buffer. We can 
utilize this property to avoid texture memory access for the 
invisible pixels, which can lead to memory bandwidth 
reduction. Since about 40% of pixels fail this depth test, this 
scheme can reduce the average external memory bandwidth 
requirement to 200MB/s. Fig. 10 shows the pipeline ordering 
for the early depth test. 

Also, we adopt a power-efficient small cache system to 
effectively reduce the external memory bandwidth requirement 
to the level of 150MB/s under. For this cache system, we use 
16 entries for texture cache and 8 entries for depth and pixel 
cache, respectively. The miss rate for these small caches are 



B.-G. Nam et al.:  Development of a 3-D Graphics Rendering Engine with Lighting Acceleration for Handheld Multimedia Systems 1025

64%, 29% and 35%, respectively. Although the miss rates are 
fairly high, this can reduce the external memory bandwidth 
requirement to 93MB/s, which is the amount the current 
handheld system can support for rendering engine. Fig. 11 
shows the transition of the external memory bandwidth 
requirement according to the schemes we adopt. 
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Fig.  10. Depth test reordering. (a) Original 3-D graphics pipeline, (b) 

Early depth test. 
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Fig.  11. Memory bandwidth reduction of RamP-Lite. 
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IV.  IMPLEMENTATION RESULTS 

The target system is modeled and prototype FPGA system is 
developed. The system incorporates QVGA size LCD screen. 
The host is the PXA-255 processor [7] and it manages the 
entire system including the system memory. In RamP-Lite, the 
cache system runs at a four times higher clock frequency than 
that of the rendering core to process tag-comparison and Read-
Modify-Write (RMW) operations in one cycle time of the core 
clock. This is needed for depth-test and alpha-blending 
operations to sustain the maximum throughput of the engine. 
The interrupt service routine is implemented for the host to 
service memory transaction requests from the RamP-Lite 
under its cache misses. The software library is implemented 
and runs on the PXA-255. It is aimed to support a 3D graphics 
library for the geometry operations like transformation, 
clipping and projection. 

Based on the FPGA implementation result, we have 
developed a fully synthesizable Verilog-HDL model for the 
RamP-Lite and implemented it into a test chip with Samsung 
1-poly 6-metal 0.18um CMOS technology. The synthesized 
logic consists of 181K gates. The die size is 5mm × 5mm 
while the graphics core takes only 1.59mm × 1.59mm. And it 
operates at the frequency of 20MHz with 14.7mW power 
consumption. A chip microphotograph is shown in Fig. 12 and 
prototype system in Fig. 13. 

 

 

Fig.  12. Chip microphotograph. 

 

 
 

Fig.  13. Prototype system. 

 

TABLE I 

CHIP SPECIFICATION 

Unit Unit Symbol 

     Process technology Samsung 0.18 1-poly 6-metal CMOS 
     Supply voltage Core: 1.8V,  I/O: 3.3V 
     Operating frequency Main pipeline: 20MHz,  Cache: 80MHz 
     Power consumption 14.7mW 
     Gate counts 181K gates 
     Chip size Die: 5mm × 5mm (pad limited) 

Core: 1.59mm × 1.59mm 
     Package 208pin QFP 

 

V.  CONCLUSION 

A low-power three-dimensional (3-D) graphics rendering 
engine augmented with lighting acceleration capability is 
designed and implemented for handheld multimedia terminals. 
The lighting unit is hardware implemented and integrated into 
the chip for the low power acceleration of the 3D graphics 
applications. The lighting engine uses approximated parameter 
values for the lighting computation, which leads to 85% power 
saving with a maximum 3% error. In order to cope with the 
memory bandwidth problem, three steps are used. We adopt 
the bilinear MIPMAP filtering algorithm based on our 
proposed energy-efficiency metric for the texture filtering 
algorithms. Based on this metric, the bilinear MIPMAP texture 
filtering is the best for the low-power rendering engine. The 
depth test stage is put into the earlier stage of the pipeline to 
eliminate the texture memory access for invisible pixel 
rendering. The power efficient, small rendering cache system 
was also proposed. The test chip runs at 20MHz with pixel fill 
rate of 20Mpixels/s and power consumption of 14.7mW. The 
implementation results show that the proposed schemes are 
suitable for the low-power handheld systems with small size 
screen. 
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