
IEEE Transactions on Consumer Electronics, Vol. 51, No. 3, AUGUST 2005

Contributed Paper
Manuscript received July 15, 2005 0098 3063/05/$20.00 © 2005 IEEE

1020

Development of a 3-D Graphics Rendering Engine with Lighting

Acceleration for Handheld Multimedia Systems

Byeong-Gyu Nam, Min-wuk Lee, and Hoi-Jun Yoo

Abstract — A low-power three-dimensional (3-D) graphics

rendering engine with lighting acceleration is designed and
implemented for handheld multimedia terminals. The lighting
unit is hardware implemented and integrated into the chip for
the low-power acceleration of the 3D graphics applications.
We adopt the following three steps to handle the memory
bandwidth problem for rendering operations. I) We find
bilinear MIPMAP is the best texture filtering algorithm for
handheld systems based on our developed energy-efficiency
metric. With this observation, we adopt bilinear MIPMAP for
our texture filtering unit, which requires only 50% of texture
memory bandwidth compared with trilinear MIPMAP filtering,
II) We put the depth test operation into the earlier stage of the
graphics pipeline, which eliminates texture memory accesses
for invisible pixels, III) We develop a power-efficient small
cache system as the interface to rendering memory. The
accelerator takes 181K gates and the performance reaches
20Mpixels/s. A test chip is implemented with 1-poly 6-metal
0,18um CMOS technology. It operates at the frequency of
20MHz with 14.7mW power consumption1.

Index Terms — 3D Graphics, Lighting, Rendering Engine,

Low Power, Handheld System.

I. INTRODUCTION

As the mobile electronics market increases rapidly, third-
generation (3G) multimedia terminals such as cellular phones
and personal digital assistants (PDAs) are becoming more
popular. They already require real-time multimedia
applications such as MP3, MPEG-4 audiovisual codec and
even three-dimensional (3-D) computer graphics.

For mobile wireless applications, power consumption is one
of the main problems due to their limited battery lifetime.
Moreover, since real-time 3-D computer graphics inherently
requires extremely large computing power and memory
bandwidth, the realization of a 3-D graphics system in a
mobile computing environment is a challenging problem.

Recently, there have been several researches on the low
power 3-D graphics for hand-held devices, including hardware
accelerators [1]-[4] as well as software libraries [5]-[6]. In
hardware acceleration approaches, even if the rendering stage
is accelerated by hardware, the geometry stage is still mainly
implemented with software [6] or with limited hardware
function of arithmetic units [1], which leads to extra power
overhead. In ordinary cases for wireless applications, the RISC

1 The authors are with the Semiconductor System Laboratory, Department

of Electrical Engineering and Computer Science, Korea Advanced Institute of
Science and Technology (KAIST), Daejeon 305-701, Korea (e-mail:
bgnam@eeinfo.kaist.ac.kr; hjyoo@ee.kaist.ac.kr).

based application processors (AP) [7] or digital signal
processors (DSP) [8] are used to process geometry stage
computing. Although their simple datapath such as multiply-
and-accumulate (MAC) unit is suitable for the transform
operation of geometry stage computing, they can not provide
the required performance of lighting or vertex shading
operations, which require complex special functions like
reciprocal square root or powering operation in geometry
processing.

In this work, we designed and implemented a 3-D graphics
rendering engine augmented with lighting capability in order
to increase its performance and power efficiency. The
architectures of the complex reciprocal square root (RSQ) and
the powering (POW) units, required by the OpenGL lighting
equation are optimized for the lighting engine of the real-time
3-D graphics applications on handheld devices.

The requirement of huge memory bandwidth required for
texture mapping, depth test and alpha blending is critical for a
high rendering performance. Previous works used embedded
memory as a solution to this problem [3][4]. However,
integrating large memory on a single die with logics brings
increases of chip size and fabrication cost. As an alternative
solution, in this architecture, three kinds of mechanisms are
adopted to reduce external memory bandwidth requirement
effectively for the rendering operations. The texture filtering
algorithms are analyzed and the bilinear MIPMAP filtering [9]
is adopted for the reduced memory bandwidth and the best
energy efficiency. Moreover, the depth test is placed into the
earlier stage of the graphics pipeline to remove unnecessary
texture memory access for invisible pixels from the viewer.
Also, a cache system for the rendering memory transactions is
introduced: texture cache, depth cache and pixel cache as the
interface to texture memory, depth buffer and frame buffer,
respectively. Although large cache memory can reduce the
miss rate significantly, it takes large area and its parallel search
of large number of tags leads to huge power consumption.
Therefore, a small size cache system is implemented to reduce
power overhead.

With all of the features mentioned above, the accelerator
reduces computing overhead from the AP by offloading
lighting and rendering computations and consequently realizes
low-power consumption.

This paper is organized as follows. In the next section, we
present target specifications of a 3-D accelerator for the
current target 3G systems. In section 3, we explain the detailed
architecture of the rendering engine with the proposed lighting
engine and memory bandwidth reduction schemes to attain
high performance and low power consumption.

B.-G. Nam et al.: Development of a 3-D Graphics Rendering Engine with Lighting Acceleration for Handheld Multimedia Systems 1021

Implementation results are presented in section 4. Finally we
conclude in section 5.

II. TARGET SYSTEM

Fig. 1-(a) shows a 3G system that contains a RF frontend, a
baseband modem for communication, an application processor
for multimedia processing, memories, and peripherals. There
are three kinds of requirements to be met for the 3-D graphics
to be realized in these systems, i.e. the performance of 3-D
graphics, memory bandwidth, and power consumption. In this
section, we will cover the specific requirements for the above
issues.

Application

Processor
Mem

Ctrl

LCD

I/O

Baseband

ModemR
F

F
ro

n
te

n
d

System

Memory

SRAM Flash

Application

Processor
Mem

Ctrl

LCD

I/O

Baseband

ModemR
F

F
ro

n
te

n
d

System

Memory

SRAM Flash

RamP-

Lite

(a)

(b)
Fig. 1. Examples of target 3G system. (a) Conventional 3G system, (b)

3G system with RamP-Lite.

A. Performance

We analyzed the performance of 3-D graphics pipeline to
identify the system level performance need. In this analysis, we
used our developed 3-D graphics library, Mobile-GL, which is
compatible with OpenGL-ES [10] and optimized with the
fixed-point arithmetic for the 3-D graphics pipeline [11].

Fig. 2-(a) shows the rendering performance when the 3-D
graphics pipeline implemented with Mobile-GL runs on the
400MHz PXA-255 application processor [7]. For QVGA
(240×320) screen resolution, pixel fill rate of 11.5Mpixels/s is
required for 30 frames/s and average depth complexity of five,

which is the usual case for the handheld 3-D graphics
applications. However, the graph shows the performance is far
below the requirement. To solve this problem, the rendering
stages should be accelerated since the rendering stage takes
77% of processing power in the 3-D graphics pipeline.

Although the rendering stages are accelerated by hardware,
the geometry stage is still the next performance bottleneck,
which is described in Fig. 2-(b). Under the same drawing
complexity with rendering operations, the geometry stage
should process 1.15Mpolyons/s since the average pixel count
in a polygon is about ten [11]. However, the polygon
processing rate is still under the required performance.

This problem can be solved if the lighting part, which takes
about 83% of the geometry computation, is also hardware
accelerated. This is shown in Fig. 2-(c).

B. Memory Bandwidth

In general, 3-D graphics rendering requires a huge amount
of memory bandwidth for rendering operations like texture
mapping, depth test and alpha blending. Recently, mobile
DDR SDRAM can provide maximum bandwidth of 400MB/s,
but less than 50% is available due to the bus contention by
multiple IPs in current handheld systems [12]. Also, the vertex
data transfer from the host processor to rendering engine takes
about 40MB/s. Therefore, less than 150MB/s of the memory
bandwidth can be assigned to pure rendering operations.

However, the rendering engine with trilinear MIPMAP
filtered texture mapping operation [9], which is an ordinary
case for PC graphics systems requires 440MB/s for its
rendering performance of 20Mpixels/s. Therefore, we have to
find a proper texture filtering algorithm for our target systems.

C. Power Consumption

The most important design factor for the handheld devices is
the low power consumption because of their limited battery
lifetime. Since current Li-ion battery can supply 2000mWh,

system power budget for LCD, CPU, memory and others is
only about 800 mW for a 2~3-hours [13]. Under this situation,
only 200~300 mW can be allocated to the 3-D rendering
engine including the rendering memories, thus, just tens of
milliwatts can be assigned to the 3-D rendering engine core.

StrongARM

200MHz

PXA255

400MHz

Required

0

2

4

6

8

10

12

P
ix

el
 f

ill
 r

at
e

(M
p

ix
el

s/
se

c)

StrongARM

200MHz

PXA255

400MHz

Required

0.0

0.2

0.4

0.6

0.8

1.0

1.2

P
o

ly
g

o
n

 r
at

e
(M

p
o

ly
g

o
n

s/
se

c)

StrongARM

200MHz

PXA255

400MHz

Required

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

P
o

ly
g

o
n

 r
at

e
(M

p
o

ly
g

o
n

s/
se

c)

(a) (b) (c)
Fig. 2. Performance graph. (a) rendering performance, (b) geometry processing performance, (c) geometry processing performance when lighting

is hardware accelerated..

IEEE Transactions on Consumer Electronics, Vol. 51, No. 3, AUGUST 2005 1022

To realize the 3-D graphics on handheld systems under

these system constraints mentioned above, we have to design a
hardware accelerator for rendering and lighting operations to
meet the performance and power constraints. In this
accelerator, we also need some kind of schemes to handle
memory bandwidth requirements effectively.

We propose a small power-efficient rendering engine,
named as RamP-Lite, augmented with the lighting engine, the
energy efficient texture filtering unit and the small cache
system to realize the 3-D graphics on handheld devices under
the constraints mentioned above.

In the system configuration of Fig. 1-(a), our graphics
accelerator can be attached as a companion chip to the
application processor. Our goal is to offload the computation
overhead from the application processor in processing real-
time 3-D graphics applications. Consequently, we can attain
high performance and low power consumption by utilizing
dedicated hardware for computation intensive operations.

As a result, the remaining parts of the graphics pipeline such
as transformation, clipping and projection can be easily
implemented as software by utilizing the MAC unit of the
conventional AP that is already installed in current handheld
systems. The RamP-Lite resolves performance bottlenecks of
the conventional 3-D graphics pipeline on handheld devices
with minimal modifications to existing systems. Fig. 1-(b)
shows the modification.

III. 3D GRAPHICS ACCELERATOR

In order to design a power-efficient rendering engine, we
adopt several kinds of approximation techniques for the
pipeline design at the cost of negligible image quality loss.
Details of the techniques for lighting and texture filtering will
be presented in the following sections.

The pipeline of RamP-Lite is mainly composed of two parts:
geometry and rendering stages. We mainly adopted the fixed-
point arithmetic units for the entire pipeline since they
consume less power than floating point units [1][5][6]. Fig. 3
shows the organization of the main pipeline.

A. Lighting Engine

In order to support lighting in a separated chip from the AP,
where other parts of geometry computations are processed,
conventional 3-D graphics pipeline dataflow [14] should be
modified. Fig. 4 describes this modification.

Although this modification is similar to the deferred lighting
proposed in [15], the deferred lighting that processes lighting
in the middle of the rendering process requires completion of
lighting operation in one rendering cycle in order to preserve
the throughput of the rendering engine. Moreover, they assume
a software solution to the lighting engine, while our focus is on
the hardware acceleration in the pipeline of current handheld
system environment.

Depth
cache

Texture
cache

Pixel
cache

Instr
Buffer

instr

R
en

d
erin

g
 S

tag
e

G
eo

m
etry S

tag
e

M
em

o
ry In

terface

Vertex
Fetch

Lighting

Triangle
Setup

Rasterize

Depth
Test

Texture
Mapping

Blending

Fig. 3. The organization of RamP-Lite.

Geometry Stage

Geometry Stage

Application
Processor

Hardware
Acceleration

Transfor-
mation Lighting Clipping Projec-

tion Rendering

Transfor-
mation LightingClipping

Projec-
tion Rendering

(a)

(b)

Fig. 4. Pipeline reordering. (a) Original 3-D graphics pipeline, (b)

Proposed pipeline.

Since the lighting stage is moved to a hardware accelerator

(i.e. the next stage of projection), the parameters needed for
lighting e.g. normal (N), view (V), light (L) vectors and
material properties should be transferred to the accelerator.
These parameters should bypass the projection stage on the
application processor to insure that they are not distorted by
the projection stage for correct lighting computation.

We used two approaches to reduce the overhead from the
hardware implementation since direct implementation of the
lighting engine into the hardware requires too much area
overhead. Firstly, we implemented the lighting pipeline stages
with multiple cycle operations by folding the internal

B.-G. Nam et al.: Development of a 3-D Graphics Rendering Engine with Lighting Acceleration for Handheld Multimedia Systems 1023

arithmetic units three times. The rendering throughput
degradation from this approach is negligible since less than 3%
of triangles in a QVGA screen size are composed of less than
three pixels from our statistics. On the other hand, every
rendering pipeline stages proceed in one cycle to lower
operating clock frequency without sacrificing the rendering
performance for low power design.

Secondly, we simplified the format of the lighting
parameters into Q8.8 2 instead of direct implementation of
Q16.16. We found that about 96% of the lighting parameters
can be represented by Q8.8. The maximum errors are 1% for
normal and view vectors, respectively, and 3% for light
vectors with this representation.

Normalize N,V,L

H = L+V / |L+V|

Normalize H

L.N , N.H

amb
m

 amb
l

max (L.N,0) diff
m

 diff
l

max(N.H,0)SPEC spec
m

 spec
l

Fig. 5. The pipeline of lighting engine.

Once the lighting parameters are fed into the lighting engine,

they pass through the pipeline shown in Fig. 5, which
implements the OpenGL lighting equation [14]. Each stage
proceeds in three cycles. The N,V,L vectors are normalized
first and the half vector H is evaluated. The H vector is also
normalized to evaluate the lighting equation. There are two
special operations needed for the evaluation of this lighting
equation, i.e. RSQ for the normalization of the vectors and
POW for computation of the specular term. The functional
units for these operations are shown in Fig. 6.

Basically, the lighting parameters fed into the engine is
managed and stored as fixed-point numbers. However, when
special functions like RSQ or POW are necessary, the data is
temporarily converted to floating point numbers since
insufficient precision in the fixed-point datapath may result in
severe artifacts when drawing large polygons. Then, the results
of the operation return to fixed-point numbers.

2 Qm.n represents the format of a fixed point number, where ‘m’

represents the number of bits used for integer part and ‘n’ represents for that
of fraction part.

..
.

..
.

Exponent

Mantissa

>> >> >>

MUL MUL MUL
LUT

12

3

17 17 17

29 29 29

29 29 29

9

33

C
o
n
v
e
rt

to

F

P

(Q17.16) (Q9.8)x2+y2+z2

..
.

..
.

Exponent

Mantissa

>> >> >>

MUL MUL MUL
LUT

12

3

5 6 5

18 19 18

5 6 5

16

{x,y}

5
1
2
 e

n
trie

s
7
2
5
 e

n
trie

s

1
x

xy

(a)

(b)

x y z

r g b

x y z

(Q9.8) (Q9.8)

(Q9.8) (Q9.8) (Q9.8)

r g b(Q0.5) (Q0.5) (Q0.5)

(Q0.5) (Q0.5) (Q0.5)

(Q0.5,Q7.4)

Exponent 5

Fig. 6. Special function units. (a) Reciprocal square root (RSQ) unit, (b)

Powering (POW) unit.

For the normalization operation, we used one precision-

controlled look-up table (LUT) for the RSQ and 3 multipliers
and shifters for each vector component respectively. In the
precision-controlled LUT, all leading zeros are eliminated and
only meaningful 12-bit mantissa and a 3-bit exponent for
corresponding fractional point locations are stored. The
mantissa is used for the multiplier operand in evaluating the
characteristic value of the RSQ result. The exponent is used
for shifting the characteristic value to make the actual RSQ
result.

To address the LUT, the sum of square (SSQ) of each
vector component is used. However, we do not directly supply
the SSQ value as the address since 33-bit (Q17.16) SSQ value
for the address requires overly large LUT. Therefore, we
convert the SSQ to the floating point format, 6-bit exponent
and 9-bit mantissa, by dropping all leading zeros and taking
only the nine most significant bits (MSBs) for the address
simplification. By using this 9-bit mantissa for the LUT
address, 512-entry LUT with 12-bit mantissa and 3-bit
exponent can be used. The 3-bit exponent from the LUT
should be compensated with the 6-bit exponent from the
floating point SSQ.

For the powering operation, the architecture of the
functional unit is basically similar to the RSQ unit. In this
architecture, the simplification for the input value is also taken
to reduce LUT size. Since the input range of the powering
operation xy for OpenGL specular lighting is x∈[0,1] and
y∈[0,128], we restricted the format of x and y as Q0.5 and
Q7.4, respectively. Thus, 725-entry LUT with 12-bit mantissa
and 3-bit exponent can be used for POW operation.

These precision-controlled LUT based units save the power
and the area of the lighting engine by 85% and 75%,

IEEE Transactions on Consumer Electronics, Vol. 51, No. 3, AUGUST 2005 1024

respectively, compared with the IEEE-754 single-precision
floating-point units while delivering the required precision. In
Fig. 7, a lit, smooth-shaded scene with different material
properties for each part is rendered to show reliability of the
proposed scheme.

(a)

(b)

Fig. 7. Rendering effects for reduced precision. (a) Lighting with Q16.16,

(b) Lighting with Q8.8.

B. Rendering Engine

As shown in Fig. 3, the rendering engine of RamP-Lite
mainly consists of five stages. Each stage performs the
rendering operations which include triangle setup, shading,
texture mapping, depth test and blending.

In RamP-Lite, we adopt three steps to reduce the external
memory bandwidth for rendering operations. Since the texture
mapping is the main source of memory bandwidth requirement,
we mainly focus on the reduction of texture memory
transaction.

Firstly, we use bilinear MIPMAP filtering algorithm for
texture filtering. Usually, high-end 3D graphics rendering
engines adopt trilinear MIPMAP filtering to enhance their
image quality extremely. However, it is too expensive for the
handheld systems with small screen size since trilinear
MIPMAP filtering requires large energy consumption as well
as a huge amount of memory bandwidth, i.e. requiring eight
texels for each pixel. Therefore, we should select a cost-
effective filtering algorithm for handheld systems.

In order to find the proper one, we analyzed the energy
efficiency of each filtering algorithm based on the energy
consumption and image quality of scenes generated by them.

The energy consumption is extracted from our simulator,
which models the energy consumption for the capacitance of
the external system bus and memory. The energy for each
filtering algorithm is shown in Fig. 9-(a). We analyze the
image quality based on the aliasing factor of the scene since
texture filtering is for the antialiasing of a texture-mapped
image. Therefore, we perform discrete cosine transform (DCT)
for the test scenes to get the information of high-frequency
factor in the scene that contributes to aliasing. The extracted
frequency spectrum and its coefficient matrix are used for
evaluating the image quality metric defined by us as in
equation (1). We define the image quality of a scene as the
sum of DCT coefficients weighted inversely proportional to
their corresponding frequency.

tscoefficienDCTDtheisvuFwhere

vu
vuF

qualityimage
u v

2),(

),(
_

0 0= = +
=

π π

 (1)

The DCT results are shown in Fig. 8 and evaluated image

quality indices are shown in Fig. 9-(b). To proceed the analysis,
we define another term, the energy efficiency of a texture
filtering algorithm as in equation (2).

energy
qualityimage

efficiencyenergy
Δ

Δ= _
_ (2)

In Fig. 9, we should notice that the energy consumption

significantly increases, while the image quality does not
increase so much when trilinear MIPMAP filtering is used.
This means that the energy efficiency drops abruptly at the
trilinear MIPMAP point, which is shown in Fig. 9-(c).
Therefore, we adopt bilinear MIPMAP filtering which requires
four texels for rendering one pixel. With this algorithm, we can
reduce the external memory bandwidth requirement to
280MB/s.

In order to reduce the memory bandwidth requirement
further, we moved the depth test stage to the earlier stage of
pipeline before the texture mapping stage. In conventional 3D
graphics, the depth test stage is located in the final stage of the
pipeline, where it culls pixels invisible from the viewer and
prevents it from being drawn into the frame buffer. We can
utilize this property to avoid texture memory access for the
invisible pixels, which can lead to memory bandwidth
reduction. Since about 40% of pixels fail this depth test, this
scheme can reduce the average external memory bandwidth
requirement to 200MB/s. Fig. 10 shows the pipeline ordering
for the early depth test.

Also, we adopt a power-efficient small cache system to
effectively reduce the external memory bandwidth requirement
to the level of 150MB/s under. For this cache system, we use
16 entries for texture cache and 8 entries for depth and pixel
cache, respectively. The miss rate for these small caches are

B.-G. Nam et al.: Development of a 3-D Graphics Rendering Engine with Lighting Acceleration for Handheld Multimedia Systems 1025

64%, 29% and 35%, respectively. Although the miss rates are
fairly high, this can reduce the external memory bandwidth
requirement to 93MB/s, which is the amount the current
handheld system can support for rendering engine. Fig. 11
shows the transition of the external memory bandwidth
requirement according to the schemes we adopt.

Rendering Stage

Triangle
Setup Rasterize

Depth
Test

Texture
Mapping

(a)

(b)

Geometry Blend

Rendering Stage

Triangle
Setup

Rasterize
Depth
Test

Texture
Mapping

Geometry Blend

Fig. 10. Depth test reordering. (a) Original 3-D graphics pipeline, (b)

Early depth test.

100

200

300

400

280

200

91.6

440

Memory

Bandwidth

(MB/s)

Bilinear

MIPMAP

Filtering

Cache

System

Depth Test

Reordering

Conventional

System

36%

reduction

29%

reduction

54%

reduction

Fig. 11. Memory bandwidth reduction of RamP-Lite.

Point sampling Bilinear filtering Bilinear MIPMAP Trilinear MIPMAP

π

π

0 π

π

0 π

π

0 π

π

0
u

v

u

v

u

v

u

v

Fig. 8. The DCT results (below) for rendered images (above) by different texture filtering algorithms. The 2D DCT coefficients are represented as

points with gray level intensity. (a) Point sampling, (b) Bilinear filtering, (c) Bilinear MIPMAP, (d) Trilinear MIPMAP.

(a)

Point

Sampling

Bilinear

Filtering

Bilinear

MIPMAP

Trilinear

MIPMAP

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

E
ne

rg
y

co
n

su
m

p
ti

on

Texture filtering algorithm

(b)

Point

Sampling

Bilinear

Filtering

Bilinear

MIPMAP

Trilinear

MIPMAP

1.00

1.02

1.04

1.06

1.08

1.10

Im
ag

e
q

u
al

it
y

Texture filtering algorithm

(c)

PT - BF BF - BM BM - TM

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

PT: Point Sampling
BF: Bilinear Filtering
BM: Bilinear MIPMAP
TM: Trilinear MIPMAP

E
ne

rg
y

ef
fi

ci
en

cy

Texture filtering method transition

Fig. 9. The comparison of energy and image quality indices for the texture filtering algorithms. These values are normalized to the point sampling

case. (a) Energy consumption, (b) Image quality, (c) Energy efficiency.

IEEE Transactions on Consumer Electronics, Vol. 51, No. 3, AUGUST 2005 1026

IV. IMPLEMENTATION RESULTS

The target system is modeled and prototype FPGA system is
developed. The system incorporates QVGA size LCD screen.
The host is the PXA-255 processor [7] and it manages the
entire system including the system memory. In RamP-Lite, the
cache system runs at a four times higher clock frequency than
that of the rendering core to process tag-comparison and Read-
Modify-Write (RMW) operations in one cycle time of the core
clock. This is needed for depth-test and alpha-blending
operations to sustain the maximum throughput of the engine.
The interrupt service routine is implemented for the host to
service memory transaction requests from the RamP-Lite
under its cache misses. The software library is implemented
and runs on the PXA-255. It is aimed to support a 3D graphics
library for the geometry operations like transformation,
clipping and projection.

Based on the FPGA implementation result, we have
developed a fully synthesizable Verilog-HDL model for the
RamP-Lite and implemented it into a test chip with Samsung
1-poly 6-metal 0.18um CMOS technology. The synthesized
logic consists of 181K gates. The die size is 5mm × 5mm
while the graphics core takes only 1.59mm × 1.59mm. And it
operates at the frequency of 20MHz with 14.7mW power
consumption. A chip microphotograph is shown in Fig. 12 and
prototype system in Fig. 13.

Fig. 12. Chip microphotograph.

Fig. 13. Prototype system.

TABLE I

CHIP SPECIFICATION

Unit Unit Symbol

 Process technology Samsung 0.18 1-poly 6-metal CMOS
 Supply voltage Core: 1.8V, I/O: 3.3V
 Operating frequency Main pipeline: 20MHz, Cache: 80MHz
 Power consumption 14.7mW
 Gate counts 181K gates
 Chip size Die: 5mm × 5mm (pad limited)

Core: 1.59mm × 1.59mm
 Package 208pin QFP

V. CONCLUSION

A low-power three-dimensional (3-D) graphics rendering
engine augmented with lighting acceleration capability is
designed and implemented for handheld multimedia terminals.
The lighting unit is hardware implemented and integrated into
the chip for the low power acceleration of the 3D graphics
applications. The lighting engine uses approximated parameter
values for the lighting computation, which leads to 85% power
saving with a maximum 3% error. In order to cope with the
memory bandwidth problem, three steps are used. We adopt
the bilinear MIPMAP filtering algorithm based on our
proposed energy-efficiency metric for the texture filtering
algorithms. Based on this metric, the bilinear MIPMAP texture
filtering is the best for the low-power rendering engine. The
depth test stage is put into the earlier stage of the pipeline to
eliminate the texture memory access for invisible pixel
rendering. The power efficient, small rendering cache system
was also proposed. The test chip runs at 20MHz with pixel fill
rate of 20Mpixels/s and power consumption of 14.7mW. The
implementation results show that the proposed schemes are
suitable for the low-power handheld systems with small size
screen.

REFERENCES

[1] J.-H. Sohn, J.-H. Woo, M. Lee, H.-J. Kim, R. Woo, and H.-J. Yoo, “A
50Mvertices/s Graphics Processor with Fixed-Point Programmable
Vertex Shader for Mobile Applications,” ISSCC Digest of Technical
Papers, 2005.

[2] M. Imai, T. Nagasaki, J. Sakamoto, H. Takeuchi, H. Nagano, S. Iwasaki,
and et al., “A 109.5mW 1.2V 600Mtexels/s 3-D Graphics Engine,”
ISSCC Digest of Technical Papers, 2004.

[3] R. Woo, S. Choi, J.-H. Sohn, S.-J. Song, Y.-D. Bae, C.-W. Yoon, and et
al., “A 210-mW Graphics LSI Implementing Full 3-D Pipeline With 264
Mtexels/s Texturing for Mobile Multimedia Appliocations,” IEEE
Journal of Solid State Circuits, Vol.39, Feb. 2003.

[4] M. Kameyama, Y. Kato, H. Fujimoto, H. Negishi, Y. Kodama, Y. Inoue,
and H. Kawai. “3D Graphics LSI Core for Mobile Phone - Z3D,”
SIGGRAPH/Eurographics Workshop on Graphics Hardware 2003.

[5] G. K. Kolli, “3D Graphics Optimization for ARM architecture,” Game
Developer Conference, 2002.

[6] K. Yosida, T. Sakamoto, and T. Hase, “A 3D Graphics Library for 32-
bit Microprocessor for Embedded Systems,” IEEE Transactions on
Consumer Electronics, Vol.44, Aug. 1998.

[7] Intel PXA-255 Processor Developer’s Manual, Intel Corporation,
March, 2003.

[8] OMAP5910 Dual-Core Processor Technical Reference Manual, Texas
Instrument Incorporated, July. 2002.

B.-G. Nam et al.: Development of a 3-D Graphics Rendering Engine with Lighting Acceleration for Handheld Multimedia Systems 1027

[9] J. P. Ewins, M. D. Waller, M. White, and P. F. Lister, “MIP-Map Level
Selection for Texture Mapping,” IEEE Transactions on Visualization
and Computer Graphics, Vol. 4, No. 4, Oct.-Dec. 1998.

[10] OpenGL-ES Common/Common-Lite Profile Specification Version 1.0,
Khronos Group, 2003

[11] M.-W. Lee, B.-G. Nam, J.-H. Sohn, N. Cho, H. Kim, K. Kim, and H.-J.
Yoo, “A Fixed-point 3D Graphics Library with Energy-efficient Cache
Architecture for Mobile Multimedia Systems,” ISCAS, 2005.

[12] PowerVR-MBX, available:
http://www.arm.com/products/solutions/3Dgraphics.html

[13] W. R. Hamburgen, D. A. Wallach, M. A. Viredaz, L. S. Brakmo, C. A.
Waldspurger, J. F. Bartlett, T. Mann, and K. I. Farkas, “Itsy: Stretching
the Bounds of Mobile Computing,” IEEE Computers, April, 2001.

[14] M. Segal, and K. Akeley, “The OpenGL Graphics System : A
Specification Version 1.2.1,” Silicon Graphics Inc. April 1, 1999.

[15] B.-S. Liang, and C.-W. Jen, “Computation-Effective 3-D Graphics
Rendering Architecture for Embedded Multimedia System,” IEEE
Transactions on Consumer Electronics, Vol. 46, No. 3, August 2000.

Byeong-Gyu Nam received the B.S. degree in computer
engineering from Kyungpook National University, Daegu,
Korea, in 1999 and M.S. degree in computer science
from Korea Advanced Institute of Science and
Technology (KAIST), Daejeon, Korea, in 2001. He is
currently working toward the Ph.D. degree in electrical
engineering at KAIST. From 2001 to 2002, he had been a
research engineer in parallel system research laboratory,

Electronics and Telecommunication Research Institute (ETRI), Daejeon,
Korea. His research interests include low-power design and implementation
of 3D graphics processors and embedded microprocessors for handheld
systems.

Min-wuk Lee received the B.S. degree in electronics
engineering from Kyungpook National University,
Daegu, Korea, in 2003 and M.S. degree in electrical
engineering from Korea Advanced Institute of Science
and Technology (KAIST), Daejeon, Korea, in 2005.
Since 2005, he has been an engineering staff in nVidia,
Seoul, Korea. His research interests include real-time 3D
graphics for handheld systems. He is now working for

the graphics library for handheld systems.

Hoi-Jun Yoo (M’95) graduated from the Electronic
Department of Seoul National University, Seoul, Korea,
in 1983 and received the M.S. and Ph.D degrees in
electrical engineering from the Korea Advanced Institute
of Science and Technology (KAIST), Daejeon, in 1985
and 1988, respectively. His Ph.D. work concerned the
fabrication process for GaAs vertical optoelectronic
integrated circuits.

From 1988 to 1990, he was with Bell Communications
Research, Red Bank, NJ, where he invented the two-dimensional phase-
locked VCSEL array, the front-surface-emitting laser, and the high-speed
lateral HBT. In 1991, he became Manager of a DRAM design group at
Hyundai Electronics and designed a family of fast-1 MDRAMs and
synchronous DRAMs, including 256M SDRAM. From 1995 to 1997, he was
a faculty member with Kangwon National University. In 1998, he joined the
faculty of the Department of Electrical Engineering at KAIST, and currently
leads a project team on RAM Processors (RAMP). In 2001, he founded a
national research center, System Integration and IP Authoring Research
Center (SIPAC), funded by Korean government to promote worldwide IP
authoring and its SOC application. Currently he is the Project Manager for
SoC in Korea Ministry of Information and Communication. His current
interests are SOC design, IP authoring, high-speed and low-power memory
circuits and architectures, design of embedded memory logic, optoelectronic
integrated circuits, and novel devices and circuits. He is the author of the
books DRAM Design (Seoul, Korea: Hongleung, 1996; in Korean) and High
Performance DRAM (Seoul, Korea: Sigma, 1999; in Korean).

Dr. Yoo received the Electronic Industrial Association of Korea Award for
his contribution to DRAM technology in 1994 and the Korea Semiconductor
Industry Association Award in 2002.

