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Abstract—As object recognition requires huge computation
power to deal with complex image processing tasks, it is very chal-
lenging to meet real-time processing demands under low-power
constraints for embedded systems. In this paper, a configurable
heterogeneous multicore architecture with a dual-mode linear
processor array and a cellular neural network on the network-
on-chip platform is presented for real-time object recognition.
The bio-inspired attention-based object recognition algorithm
is devised to reduce computational complexity of the object
recognition. The cellular neural network is utilized to accelerate
the visual attention algorithm for selecting salient image regions
rapidly. The dual-mode parallel processor is configured into
single instruction, multiple data (SIMD) or multiple-instruction-
multiple-data modes to perform data-intensive image processing
operations while exploiting pixel-level and feature-level
parallelisms required for the attention-based object recognition.
The algorithm’s hybrid parallelization strategy on the proposed
architecture is adopted to obtain maximum performance
improvement. The performance analysis results, using a
cycle-accurate architecture simulator, show that the proposed
architecture achieves a speedup of 2.8 times for the target algo-
rithm over conventional massively parallel SIMD architecture at
low hardware cost overhead. A prototype chip of the proposed
architecture, fabricated in 0.13 µm complementary metal-oxide-
semiconductor technology, achieves 22 frames/s real-time object
recognition with less than 600 mW power consumption.

Index Terms—Cellular neural network, multicore, object
recognition, parallelism, SIMD/MIMD.

I. Introduction

OBJECT RECOGNITION has been emerging as one of
the most popular embedded applications and is widely

used in various applications such as mobile robot vision
systems, autonomous vehicle control, natural human–machine
interfaces, and visual surveillance systems [1]–[3]. For exam-
ple, object recognition plays an important role in autonomous
navigation of intelligent mobile robots. The object recog-
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nition applications are characterized by complex and data-
intensive computations with very large memory requirements.
Especially, real-time performance and low power consumption
are important factors for embedded systems. Programmability
should be also considered to deal with a wide variety of
recognition targets and algorithms.

Object recognition involves a series of complex image pro-
cessing tasks ranging from low-level image processing to high-
level image processing. In low-level processing (e.g., image
filtering, feature extraction), simple arithmetic operations are
regularly performed on a 2-D image array of pixels. On the
contrary, high-level processing is irregular and performed on
objects that are defined by groups of features extracted at the
lower level. Since object recognition requires huge computa-
tion power for each stage, general-purpose architectures, such
as microprocessor and digital signal processor cannot achieve a
real-time processing due to its sequential processing. Although
ASIC implementations like [5] can achieve real-time frame
rates, there is a flexibility limitation to deal with complex and
various recognition algorithms.

With the rise of multicore computing, parallelization and
multiprocessor implementations have become increasingly im-
portant to increase the computing power. Because object
recognition algorithm tends to exhibit huge amounts of com-
putation and inherent parallelisms, how to maximally exploit
its parallelism on the emerging multicore hardware is the key
issue for achieving a real-time performance. Recently, scale
invariant feature transform (SIFT) [4], the most popular object
recognition algorithm, has been implemented on graphics
processing unit [6] and multicore systems [7] while exploiting
the parallelism. Though both works can achieve real-time
performance with a large-size image, huge power consumption
makes it difficult to be applicable for embedded systems.
Several parallel processing architectures have been presented
for vision applications. Massively parallel single-instruction-
multiple-data (MP-SIMD) processors with linear processor
array, such as Internet message access protocol [8] and
Xetal [9] have been developed for low-level vision processing
[10], [11]. However, these processors are not suitable for
higher-level vision applications that exhibit more irregular and
data-dependent behavior than low-level operations. Multiple-
instruction-multiple-data (MIMD) multiprocessor architecture
[12] has been realized to exploit task-level parallelism in
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vision applications. However, it is hard to achieve a real-time
performance under low-power constraints due to its limited
cost inefficiency and data synchronization overhead among the
processors to access data in shared memory.

In this paper, a configurable heterogeneous multicore ar-
chitecture is presented to achieve real-time object recognition
performance for embedded systems. The main contributions
of this paper are as follows. First, a VLSI architecture
combining single instruction, multiple data (SIMD)/MIMD
dual-mode parallel processor and cellular neural network on
the network-on-chip (NoC) platform is proposed based on
algorithmic considerations. Hybrid parallelization strategy of
the algorithm on the proposed architecture obtains maximum
parallel performance while exploiting pixel-level and feature-
level parallelisms. Second, the proposed architecture is evalu-
ated using a cycle-accurate architecture simulator in terms of
the effect of hardware accelerator and dual-mode parallelism.
The results show the proposed architecture achieves 2.8 times
performance improvement over the conventional MP-SIMD
architecture. Finally, the prototype chip proves the novelty of
the proposed architecture and achieves 22 frames/s real-time
object recognition with less than 600 mW power consumption.

This paper is organized as follows. In Section II, a bio-
inspired attention-based object recognition algorithm is pre-
sented. In Section III, the target algorithm analysis including
hardware acceleration and parallelism requirements is de-
scribed. The proposed architecture and parallelization strategy
of the algorithm are shown in Section IV. Performance analysis
over the conventional MP-SIMD architecture is described
in Section V. The prototype chip implementation is shown
in Section VI. The conclusion of this paper will be made in
Section VII.

II. Bio-inspired Object Recognition Algorithm

Local feature-based object recognition algorithms, such as
SIFT, have been widely used for robust and invariant object
recognition. In the SIFT algorithm, scale invariant local key-
points are extracted first by scanning the entire image over
many scales. Then, key-point descriptors are generated from
image gradients around the extracted key-points and matching
for each key-point descriptor is performed by identifying its
nearest neighbor on the database of key-points from training
images. From the SIFT algorithm steps, it is easily found
that the execution time of SIFT algorithm is proportional to
the number of key-points extracted. Therefore, reducing the
number of key-points extracted without sacrificing accuracy is
a primary strategy to improve object recognition performance.
To reduce the computational requirements of the object recog-
nition, we introduce the additional step of finding salient image
regions before key-points are extracted. In this paper, the
concept of visual attention, inspired by human visual system, is
integrated into the conventional object recognition algorithm.

A. Saliency-Based Visual Attention

Humans focus on only visually-relevant parts of the avail-
able visual information. Visual attention is the ability of
the human visual system to rapidly detect the salient image

Fig. 1. Attention-based object recognition algorithm.

regions related to human interests. It is an essential role of the
visual cortex in the human brain [13]. The visual attention
mechanism controls the selection of the most informative
parts of the image to process the huge amount of visual
information gathered by two eyes. Many researchers have
proven biologically and psychologically that such a visual
attention strongly contributes to the high performance of the
human vision system [14].

For computational modeling of the human-like visual atten-
tion mechanism, our attention system is based on a saliency-
based model of the visual attention presented by Itti [15]. It
consists of four main steps. First, the model starts with ex-
tracting a set of features like color, intensity, and orientation in
parallel. Then, a conspicuity map is generated for each feature
by using multiscale center-surround filters, which highlights
the parts of the image that strongly differ from their surround-
ings. After that, a set of conspicuity maps is merged into a
single map of attention called saliency map. Finally, given the
saliency map, the most salient locations are selected by means
of a winner-take-all mechanism. Because the saliency-based
model is based on simple and bottom-up feature extraction
methods suitable for massively parallel operation, a real-time
performance can be achieved on dedicated parallel hardware.

B. Attention-Based Object Recognition

In this paper, the saliency-based visual attention is incor-
porated into the local feature-based object recognition such
as SIFT to reduce the computational complexity of the object
recognition. The proposed attention-based object recognition
algorithm flow is shown in Fig. 1. The algorithm is largely
divided into two stages according to the visual attention: pre-
attentive and post-attentive stages. During the pre-attentive
stage, in contrast to the conventional object recognition,
visual attention is performed in advance. Visual attention can
be regarded as a pre-processing step which allows a rapid
selection of the sensory information. To select the image
regions of interest from the saliency map, we use the attention
threshold whose value is parameterizable. Some image pre-
processing operations like difference of Gaussian (DoG) are
also performed in parallel. In the post-attentive stage, key-
points are extracted as local maximum or minimum of the
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DoG images across scales on the pre-selected salient image
regions provided by the visual attention mechanism. Key-
point descriptor vectors are then generated using local image
gradients in the region around each key-point, providing
robustness to scale, rotation, and intensity changes. Finally,
we can recognize the object by matching individual key-
point descriptor vectors to a database of features from training
images using a nearest neighbor search algorithm [4].

The main purpose of visual attention in object recognition
is cueing subsequent visual processing stages to improve
performance by reducing the computation cost of higher-
level vision tasks. Thus, instead of trying to interpret the
entire scene, the recognition module focuses on the scene
parts previously provided by the visual attention module. By
the visual attention mechanism, the number of key-points
extracted is reduced as shown in Fig. 1, avoiding background
clutter. The key-points only in the attended image region
need to be matched to the object database, making it faster
and easier to recognize the object. As a result, computational
requirements of the object recognition are reduced by 36% on
average when we test 50 objects with a background image.
The visual attention improves the recognition performance
in the presence of large amounts of clutter by up to an
order of magnitude. Moreover, a number of computer vision
applications such as object tracking and image segmentation
can benefit from the visual attention mechanism as well.

III. Target Algorithm Analysis

A. Dedicated Hardware Acceleration

The first step of algorithm analysis is to identify the
most performance critical parts, which need to be acceler-
ated through a dedicated hardware or architectural optimiza-
tions. The execution time profile of the attention-based object
recognition algorithm on 2.4 GHz CPU is shown in Fig. 2.
According to the profile results, we found that visual attention
and matching are the most computationally demanding tasks.
The execution time overhead of the visual attention should be
minimized to reduce performance penalty by the additional
step. Also, matching is an essential step and occupies larger
portion of total execution time when the size of database or
descriptor vector dimension becomes larger. Therefore, we
decided the visual attention and nearest neighbor matching are
accelerated by a dedicated hardware for better cost efficiency.
On the contrary, other parts of the algorithm such as feature
extraction and feature vector generation are variable depending
on a variety of recognition algorithms and target applications.
It is clear that a programmable multiprocessor is more suitable
to perform such data-intensive and various image processing
tasks. In this paper, it is unique that the cable news network
(CNN) is adopted to accelerate saliency-based visual attention
operation. The reason why the CNN is beneficial in the visual
attention will be described in the next subsection.

B. Cellular Neural Network to Accelerate Visual Attention

The CNN is a 2-D array of locally connected cells as an
alternative to fully connected neural networks [16]. The CNN

Fig. 2. Execution time profile of the attention-based object recognition
algorithm on a 2.4 GHz CPU.

operation is characterized by a set of template parameters. Due
to its enormous computational capabilities, the CNN enables
the realization of real-time complex image processing appli-
cations, such as pattern recognition [17] and video processing
[18]. The uniform local connections of the CNN make it
suitable for VLSI implementation. Although the cells of the
CNN are connected only to its neighbor cells, the propagation
effects of the dynamics of the network allow global feature
extraction in images.

In this paper, a CNN mechanism is utilized to accelerate
visual attention operation as shown in Fig. 3. The most time-
consuming step of the saliency-based visual attention is to
calculate various center-surround filters such as Gaussian filter
for intensity feature and Gabor filter for orientation feature
[15]. The CNN can complete the center-surround filters in
real-time because of its inherent cell-level parallel computation
model compared to digital processing systems. We use some
well-known CNN templates for implementation of CNN-based
Gaussian filter and Gabor filter [19]. The templates can also
be obtained by a learning process based on genetic algorithms
[20]. As a result, the saliency-based visual attention can be
accelerated on the CNN-based dedicated hardware to minimize
the overhead of the visual attention.

C. Required Parallelism on Target Algorithm

The attention-based object recognition has different opera-
tion characteristics based on before-and-after visual attention,
which requires two different types of parallelisms as shown
in Fig. 4. In the pre-attentive stage, all pixels on the entire
image perform the same operation for image pre-processing.
Massively parallel SIMD processing is appropriate in such reg-
ular and data-intensive operations to exploit pixel-level parallel
processing. Various image filtering used in scale-space image
generation belong to this type of operation. On the contrary,
in the post-attentive stage, image processing restricts to only
interesting image regions (i.e., image objects) around extracted
key-points selected by the visual attention module. Image
objects may be of irregular shape and dynamically changed
according to the algorithmic parameters or the location of
the selected key-points. It makes pure SIMD processing less
effective and cannot fully utilize the computing capability
of the hardware. MIMD supports independent processing of
overlapping image segments to exploit feature-level parallel
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Fig. 3. CNN-based center-surround mechanism based on [15].

Fig. 4. Different parallelism on the target algorithm: pixel-level parallelism
at the pre-attentive stage and feature-level parallelism at the post-attentive
stage.

processing. Therefore, the system architecture needs to support
both MP-SIMD and MIMD parallelisms in order to exploit
pixel-level and feature-level parallel processing, respectively.

IV. Proposed Multicore Architecture

for Real-Time Object Recognition

A. Overall Architecture

Fig. 5 shows the proposed NoC-based heterogeneous mul-
ticore architecture for real-time object recognition, which
consists of a main processor, a visual attention engine (VAE),
a matching accelerator (MA), linear array of programmable
edge clusters (PECs) and an external interface. Different
from a conventional massively parallel SIMD architecture [8]–
[11], the linear array of N simple PEs with nearest neighbor
connections is equally divided into M PECs, each of which

Fig. 5. Block diagram of the proposed heterogeneous multicore architecture.

contains a linear array of N/M PEs and a controller to allow
independent processing of each PEC. The ARM10-compatible
32-bit main processor controls the overall system operations.
The VAE [21], an 80 × 60 digital cellular neural network,
rapidly detects the salient image regions on the subsampled
image (80 × 60 pixels) by neural network algorithms like
contour and saliency map extraction. The M linearly connected
PECs perform data-intensive image processing applications
such as image gradients and histogram calculations for further
analysis of the salient image parts (i.e., the objects) pro-
vided by the VAE. The MA boosts nearest neighbor search
to obtain a final recognition result in real-time [22]. The
direct memory access (DMA)-like external interface controlled
by the main processor distributes automatically the corre-
sponding image data from external memory to each PEC
as well as the hardware accelerators such as the VAE and
the MA in order to reduce system overhead. Initially, the
2-D image plane is equally divided into M PECs according
to the image size specified by the main processor. A larger
image area with neighboring pixels across the PEC boundary
is initially assigned to each PEC for filtering operation. The
NoC is used as on-chip interconnection to provide a good
scalability and achieves a low-latency packet transfer between
IPs by employing a dual-channel crossbar switch and adaptive
circuit and packet switching [23]. Each core is connected to
the NoC via a network interface.

B. PEC Design

The PEC is an in-order, N/M-way SIMD processor designed
to accelerate image processing tasks. Fig. 6(a) shows the block
diagram of the PEC. It contains N/M linearly-connected PEs
controlled by a cluster controller, a cluster processing unit
(CLPU), local shared memory (LSM), a LSM controller, and
a PE load/store unit. The N/M PEs operate in a SIMD fashion
and perform image processing operations in a column-parallel
(or row-parallel) manner. Each PE utilizes a 4-way very long
instruction word (VLIW) architecture to execute up to four

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on December 27, 2009 at 06:52 from IEEE Xplore.  Restrictions apply. 



1616 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 19, NO. 11, NOVEMBER 2009

Fig. 6. Block diagram of: (a) PE cluster and (b) 4-way VLIW PE.

instructions in a single cycle as shown in Fig. 6(b). It consists
of a few 16-bit data path units and a 10-port register file.
The VLIW PE enables to exploit instruction-level parallelism
by executing data transfer and processing instructions concur-
rently because memory access patterns are well predictable
for many low-level image processing tasks. The CLPU, which
consists of an accumulator and a comparator, generates a
single scalar result from the parallel output processed by the
PE array. The LSM is used as an on-chip frame memory or
local memory for each PEC to store the input or processed
image data and objects. The LSM controller is responsible for
data transfer between external memory or other PECs and the
LSM while the PE load/store unit can access the LSM only
for local data transfer.

A single-port static random access memory (SRAM) is used
for the LSM to reduce area overhead. The LSM provides a
single-cycle access and is shared between the PE load/store
unit, the LSM controller, and the CLPU. Arbitration for the
LSM is performed on a cycle-by-cycle basis to improve the
LSM utilization. The LSM controller is first in priority and
accesses the LSM 128-bit in a single cycle, providing lots of
bandwidth with little interference to the PE load and store.
The LSM controller, which is an independent processing unit
optimized for data transfer like the DMA engine, enables the
data transfers in parallel with PE execution to hide excessive
external memory latency. Normally, large intermediate data
of object recognition algorithm, such as the SIFT should

be stored in external memory due to limited on-chip mem-
ory capacity. Therefore, concurrent PE computation and data
transfer of the PEC improve performance by minimizing
external memory access penalty.

C. Parallelization Strategy on Proposed Architecture

In this section, we describe a hybrid parallelization strategy
of the attention-based object recognition algorithm on the
proposed architecture (see Fig. 7). For parallelization at the
pre-attentive stage, a column-wise mapping of the image to
each PE is initially assumed. All N linear array PEs perform
the same operation on the entire image by broadcasting
instructions and iterating it the number of times equal to
the number of image lines, while exploiting pixel-level par-
allelism. The processing result is stored in a collection of all
PEC’s local memories. By fully utilizing the hardware resource
in the MP-SIMD mode, image pre-processing operations,
such as Gaussian scale-space generation, can obtain maximum
performance.

Parallelization at the post-attentive stage is achieved in the
MIMD mode by maintaining a key-point stack in each PEC’s
local memory. Given salient points by the VAE, key-points are
first extracted within a certain region around the salient point
and each PEC pushes extracted key-points location into a key-
point stack. Then, feature-level processing is independently
executed on each PEC via two steps: 1) collecting object image
data around the key-point location popped from the stack, and
2) processing the corresponding image object. By repeating
steps 1 and 2 until all key-point stacks are empty, feature-level
recognition tasks can be performed on each PEC in parallel
by sweeping through all salient image regions (i.e., objects)
within the 2-D image. Each PEC also exploits N/M-way pixel-
wise data-level parallelism to process the objects. In addition,
the PEC performs the object processing and the next object
data pre-fetching simultaneously, which leads to the increased
amount of parallelism by improving utilization of the PEC.

As an example, we mapped the SIFT algorithm on the
proposed configurable architecture. Various image processing
tasks for the SIFT algorithm are divided into two parts based
on the operation characteristics. Gaussian scale space and DoG
image pyramid generation are performed at all pixels (i.e.,
PEs) in the MP-SIMD mode while exploiting N-way pixel-
level parallelism. Then, key-point localization is performed
on each PEC in MIMD mode and the final key-points are
pushed in the corresponding PEC’s key-point stack. Orien-
tation assignment and SIFT descriptor computation around
the key-points are also performed on each PEC while ex-
ploiting M-way feature-level parallelism. As a result, a hybrid
parallelization strategy that combines pixel-level and feature-
level parallelisms can achieve optimal parallel performance
for the SIFT algorithm as well as the attention-based object
recognition.

D. SIMD/MIMD Dual-Mode Configuration

The proposed architecture supports both MP-SIMD and
MIMD parallelisms on a single hardware platform with low
hardware cost by adaptively selecting a switching mode of the
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Fig. 7. Parallelization strategy of the target algorithm on the proposed architecture.

Fig. 8. Dual-mode configuration: (a) SIMD mode and (b) MIMD mode.

NoC as shown in Fig. 8. In a circuit switching NoC, the main
processor broadcasts instruction and data to all PE array. In
this mode, the system exploits N-way massively parallel SIMD
operation for image pre-processing to fully take advantage of
multicore processing capabilities. On the contrary, in a packet
switching NoC, each PEC is responsible for the objects, each
of which contains image data around the extracted key-points.
In the MIMD mode, the M PECs operate independently in
parallel for object-parallel processing.

It takes about a few tens of cycles to change the NoC
configuration depending on the network traffic status due
to circuit establishment and release time overhead for the
circuit switching NoC. For object recognition applications,
however, the operation mode conversion occurs only twice
during the recognition period of 1-frame image: SIMD to
MIMD conversion after the pre-processing stage and MIMD to

SIMD conversion after completing the recognition. Therefore,
such a dual-mode architecture is suitable for object recognition
with negligible impact on the overall system performance.

E. VAE Design

To deal with complex algorithms like visual attention,
analog CNN processing even achieving 6 to 7 bit accuracy is a
challenge with reasonable size transistors and it is not suitable
to be integrated into SoC due to analog-to-digital or digital-
to-analog conversion overhead. The VAE is an 80 × 60 digital
CNN optimized for small area and energy efficiency. Fig. 9
shows the block diagram of the VAE, which is composed
of four arrays of 20 × 60 cells, 120 visual PEs (VPEs)
shared by the cell arrays, and a controller with 2 kB instruction
memory. Previous digital CNN [24] can integrate only a small
number of cells due to the large size of digital arithmetic
blocks. On the contrary, the VAE integrates 80 × 60 cells
that each correspond to a pixel in an 80 × 60 resolution
image. This is possible because the cells of the VAE only
perform storage and inter-cell data transfer to minimize area
while a smaller number of shared VPEs are responsible for
processing the cells data. Each cell consists of two elements:
four 6 T SRAM cell-based register file for data storage and
4-directional shift register for data transfer between neighbor-
ing cells. An 80 × 60 shift register array, distributed among the
cells, eliminates data communication overhead in convolution
operations of arbitrary kernel size and shape, which is the most
frequently used operation in the CNN. The VAE controller
generates the control signals for sequencing the operation of
the cells and the VPEs.

The CNN operation on the VAE is performed by a spiraling
shift sequence because the VAE has only connections to four
neighbor cells in contrast to the conventional CNN hardware.

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on December 27, 2009 at 06:52 from IEEE Xplore.  Restrictions apply. 



1618 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 19, NO. 11, NOVEMBER 2009

Fig. 9. Block diagram of the VAE.

Thanks to 1-cycle shift operation, it takes only 4.3 µs to
complete a 3 × 3 CNN template. As a result, the VAE
takes only 2.4 ms to complete a saliency map extraction of an
80 × 60 image. More details of the VAE are described in [21].

V. Performance Analysis

A. Simulation Setup

An architecture analysis is performed to show superiority
of the proposed architecture for the attention-based object
recognition algorithm. We built a cycle-accurate architecture
simulator, including the PEC’s instruction-set simulator and
the parameterized NoC simulator, which enables co-simulation
of the NoC and computation units. MP-SIMD architecture is
modeled as a reference multicore architecture for the target
algorithm and compared to the proposed architecture in terms
of execution time. MP-SIMD paradigm has been widely
adopted for vision processing because of the good match
with pixel-level parallelism present in most low-level vision
processing algorithms. The MP-SIMD processor provides high
computation efficiency with reduced control circuit overheads.
For performance analysis, we use 50 test images of 640 × 480
pixels and a database of 100 objects with about 20 000
total key-points, which are selected considering a real office
environment. The computing power of the PE is assumed to be
the same as that in Fig. 6(b) for both architectures. The number
of PEs per PEC (N/M) is assumed to be 8. Total execution
time is measured by the sum of the number of clock cycles
at pre-attentive and post-attentive stages. The execution time
of matching is not counted as the number of cycles at the
post-attentive stage because it is assumed that the matching is
performed on a hardware accelerator for both architectures.

B. Performance Analysis

We analyzed the performance of the proposed architecture
in terms of three key factors: the VAE, dual-mode parallelism,
and workload balance.

Fig. 10. Effect of the VAE on performance.

1) Effect of the VAE: With the help of the VAE, the
number of key-points extracted is reduced as shown in Fig. 10;
therefore, computation cost of higher-level tasks at the post-
attentive stage is also reduced. The VAE takes only 2.4 ms to
complete visual attention operation for an 80 × 60 subsampled
image, which means that the overhead of the VAE is very little
compared to total execution time. Although the low-resolution
image is mapped on the VAE, it does not cause any loss of
recognition accuracy because the role of the VAE is just to
make a rough selection of the salient image regions before
the detailed processing. As a result, the simulation results in
case of N = 64 and M = 8 show that the proposed heteroge-
neous architecture, in which the VAE selects the interesting
parts of the scene rapidly, achieves a 2.8 times improvement
over a conventional MP-SIMD architecture, as shown in
Fig. 10.

The visual attention model [15] can be implemented on a
linear array of PEs in MP-SIMD mode instead of the VAE.
For an 80 × 60 image, the VAE achieves about four times
better performance over the programmable linear PE array
because the CNN-based VAE can easily accelerate the center-
surround mechanism. Fig. 10 shows the VAE contributes
to 1.4 times performance improvement over the proposed
architecture without the VAE by reducing the overhead of
performing the visual attention on the programmable lin-
ear PE array. As a result, we can clearly show the justi-
fication of integrating the VAE on the proposed architec-
ture.

2) Effect of SIMD/MIMD Dual-Mode Parallelism:
Fig. 11(a) shows the execution time comparison of MP-SIMD
and the proposed architecture when the number of PEs is
increased. To evaluate only the effect of dual-mode parallelism
on performance, the number of key-points affected by the
VAE is assumed to be the same for both architectures. The
MP-SIMD architecture does not perform well on the post-
attentive stage because it is difficult to achieve feature-level
parallelism required for the post-attentive tasks. After the pre-
attentive stage, image regions of interest around the key-points
may be scattered and overlapped over the entire image as
shown in Fig. 4, which leads to a sequential examination
of each object due to high cost of image data redistribution
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Fig. 11. Performance comparison of MP-SIMD and the proposed
architecture.

on the MP-SIMD architecture. Moreover, the objects to be
processed are dynamic and variable depending on the number
of key-points extracted and their location on the image. Such
irregular and dynamic characteristics of the algorithms make
the pure SIMD architecture less effective and cannot fully
utilize the computing capability of the hardware. As a result,
the proposed architecture supporting dual-mode parallelism
provides better performance over the conventional MP-SIMD
architecture due to the increased amount of parallelism on the
post-attentive stage.

To study the effect of the PEC configuration, Fig. 11(b)
shows the performance comparison according to the number
of PEs per PEC (i.e., N/M) when the number of PEs is
assumed to be 64. The processing time on the post-attentive
stage increases as the N/M is lower. This is because each
PEC’s performance is not large enough to deal with feature-
level tasks, such as orientation assignment and descriptor
generation. On the contrary, a larger number of PEs per
PEC (N/M = 16) do not show better performance compared
to the case of N/M = 8 due to lower available feature-
level parallelism by a smaller number of PECs. As a result,
it is crucial to select a suitable number of PEs per PEC
on the proposed architecture considering trade-off between

Fig. 12. (a) Performance improvement and (b) parallel speedup by the
workload balancing mechanism.

a single PEC’s performance and the amount of feature-level
parallelism.

3) Effect of Workload Balance: Fig. 11 shows the post-
attentive tasks do not scale well on the proposed architecture
while the pre-attentive tasks scale linearly. Workload imbal-
ance is one of the most primary limitations for performance
scalability on a multicore processor. According to the paral-
lelization strategy of the algorithm (see Fig. 7), the number of
extracted key-points is considered as the number of tasks to be
processed on the post-attentive stage (i.e., MIMD mode). For
the attention-based object recognition algorithm, the location
of extracted key-points tends to be concentrated on attended
image regions, which results in workload imbalance among
the PECs in MIMD mode. To improve the performance in
MIMD mode, workload balancing mechanism is applied to
increase the utilization of the PECs. In this experiment, the
main processor keeps track of the operating status of all PECs
as a central controller and makes all PECs keep busy by trans-
ferring a key-point (i.e., task) from the most heavily loaded
PEC to the idle PEC. After the key-point is transferred, image
data redistribution around the key-point from the source PEC
to the idle PEC is required. Such data redistribution can be
efficiently performed by fully utilizing bandwidth provided by
the NoC. As a result, Fig. 12(a) shows the post-attentive tasks
achieve 32% additional performance improvement on average
when applying the workload balancing mechanism. Fig. 12(b)
shows the parallel speedup of the proposed architecture. The
workload balance offers better scalability performance.
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TABLE I

Chip Specifications

Process 0.13 um 1p 8M CMOS technology
Die Size 6 mm × 6 mm
Power Supply 1.2-V for core, 2.5-V for I/O
Operating Frequency 400 MHZ for Noc, 200 MHZ for IPs
# of TRs (gates, memory) 1.9 M gates, 228 KB SRAM
Power Consumption < 583 mW (for all applications)

8 PE clusters 96 GOPS
VAE 24 GOPS

Peak Performance MA 4.8 GOPS
Main processor 0.2 GOPS
Total 125 GOPS

Object Recognition Speed 22 frame/sec @ 320 × 240 image

TABLE II

Power Breakdown

Modules Power (mW) Power Percentage
8 PECs 392 67.2%
VAE 84 14.4%
NoC 46 7.9%
RISC 14 2.4%
MA 45 7.7%
EXT I/F 2 0.4%
Total 583 100%

VI. Prototype Chip Implementation

To demonstrate the performance of the proposed archi-
tecture, the prototype chip [25] with 64 PEs and 8 PECs
is fabricated in the 0.13 µm 1P8M complementary metal–
oxide–semiconductor (CMOS) process. The chip micrograph
is shown in Fig. 13 and the chip specifications are shown in
Table I. The chip die size is 6 × 6 mm2, including 1.9 M
gate count and 228 kB on-chip SRAM. Operating frequency
of the chip is 200 MHz for the IPs and 400 MHz for the
NoC. The peak performance is 125 GOPS at 200 MHz in
the case of 8-bit fixed point operations in SIMD mode and
a sustained performance of 42 GOPS is achieved on the target
application. The power consumption is less than 600 mW at
1.2-V power supply while object recognition application is
running at 22 frames/s on the QVGA (320 × 240) image. The
power breakdown of the chip is shown in Table II and
the processing time at each stage is shown in Table III.
The tree-based topology NoC with three crossbar switches
provides 76.8 GB/s aggregated bandwidth. The NoC uses the
source synchronous scheme [26] in which a strobe signal
is transmitted along with the packet for a timing reference
at a receiver end, thus, some delay variation among the
PECs in broadcasting packets is tolerable under 400 MHz
operating frequency. The NoC consumes 9% of the die
area and 8% of the power consumption, which means that
the NoC cost is amortized over the processing units. In
addition, due to the simple control circuit in the SIMD
architecture, the control part of the PEC (i.e., the cluster
controller including 2 kB instruction memory) occupies only

TABLE III

Processing Time Evaluation at 320 × 240 Image

Tasks Processing Time Ratio
Gaussian scale space + VAE 14.1 ms 31.1%
Key-point localization 3.5 ms 7.7%
Orientation assignment 5.2 ms 11.4%
Descriptor generation 8.4 ms 18.5%
Matching 14.2 ms 31.3%
Total 45.4 ms 100%

Fig. 13. Chip micrograph.

6% of the total PEC area, which results in high computa-
tion efficiency. Table IV shows the power efficiency com-
parison with the previous recognition processors. GOPS/W
and energy/pixel are adopted as a performance index for
the normalization. As a result, the prototype chip achieves
up to ten times higher GOPS/W in case of 8-bit fixed-
point operation and the lowest energy per pixel for object
recognition task with the help of the VAE and dual-mode
parallelism.
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TABLE IV

Power Efficiency Comparison With The Previous Recognition Processors

NEC[6] KAIST[8] This work
Peak performance(GOPS) 51.2 81.6 125
Power(mW) 2500 800 583
GOPS/W** 20.5 58.3 214
Image resolution 256 × 240 320 × 240 320 × 240 640 × 480
Recognition frame rate (frames/s) 30* 9.3 22 8.7
Energy per pixel (nJ/pixel)*** 1356 1120 345 218

* Applied recognition algorithm is simpler than this paper.

** 1 OP = 8-bit fixed-point operation.

*** Energy per pixel = Power
Image resolution×Frame rate .

VII. Conclusion

We presented the attention-based object recognition algo-
rithm and its novel hardware architecture based on the target
algorithm analysis. The proposed configurable heterogeneous
multicore architecture combines MP-SIMD/MIMD dual-mode
parallel processor and cellular neural network on the NoC
platform for real-time object recognition. The cellular neural
network is utilized to accelerate the visual attention algorithm
for selecting salient image regions rapidly. The dual-mode par-
allel processor performs data-intensive object recognition tasks
while exploiting pixel-level and feature-level parallelisms.
Hybrid parallelization strategy of the target algorithm on the
proposed architecture is adopted to obtain maximum parallel
performance. The performance analysis results showed the
proposed architecture achieves 2.8 times speed-up over the
conventional MP-SIMD architecture for the target algorithm.
The prototype chip implementation demonstrates 22 frames/s
real-time object recognition while dissipating less than 600
mW. The proposed architecture is targeted for the object
recognition accelerator chip and can be effectively used in
various embedded systems such as a mobile robot and a mobile
phone for real-time object recognition.
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