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Abstract—A heterogeneous multi-core processor is proposed to
achieve real-time dynamic object recognition on HD 720p video
streams. The context-aware visual attention model is proposed to
reduce the required computing power for HD object recognition
based on enhanced attention accuracy. In order to realize real-time
execution of the proposed algorithm, the processor adopts a 5-stage
task-level pipeline that maximizes the utilization of its 31 hetero-
geneous cores, comprising four simultaneous multithreading fea-
ture extraction clusters, a cache-based feature matching processor
and a machine learning engine. Dynamic resource management is
applied to adaptively tune thread allocation and power manage-
ment during execution based on the detected amount of tasks and
hardware utilization to increase energy efficiency. As a result, the
32 mm chip, fabricated in 0.13 m CMOS technology, achieves
30 frame/sec with 342 8-bit GOPS peak performance and 320 mW
average power dissipation, which are a 2.72 times performance im-
provement and 2.54 times per-pixel energy reduction compared to
the previous state-of-the-art.

Index Terms—Multi-core processor, object recognition, scale
invariant feature transform, heterogeneous, low power processor,
dynamic resource management, dynamic voltage and frequency
scaling.

GLOSSARY OF ABBREVIATIONS

GOPS giga operations per second

SIFT scale invariant feature transform

DLP data-level parallelism

SIMD single instruction multiple data

SIMT single instruction multiple thread

GFLOPS giga floating operations per second
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NoC network-on-chip

TLP task-level parallelism

DRM dynamic resource management

ROI region-of-interests

CAVAM context-aware visual attention model

SoC system-on-a-chip

ILP instruction-level parallelism

CMP chip multiprocessor

DMA direct memory access

MIMD multiple instruction multiple data

SMT simultaneous multithreading

IPC instruction per cycle

SFEC simultaneous multithreading feature extraction
cluster

FMP feature matching processor

MLE machine learning engine

DRC dynamic resource controller

DVPE dual-threaded vector processing engine

SPE scalar processing engine

TMU task management unit

DVFS dynamic voltage and frequency scaling

GF Gaussian filtering

DoG difference of Gaussian

LOC localization

FD feature description

FM feature matching

SFU special function unit

DMEM data memory

IMEM instruction memory

MAC multiply-accumulate

GMACS giga multiply-accumulate per second

ZLSH zero-less locality sensitive hashing

CBM cached-based matching
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DBM database-based matching

SAD sum of absolute difference

LSH locality sensitive hashing

PE processing element

RPE reconfigurable processing element

MT multithreading

DTA dynamic tile allocation

FIFO first-in first-out

VFI voltage-frequency island

UAV unmanned aerial vehicle

IC integrated circuit

I. INTRODUCTION

A S THE resolution of the video applications are ever in-
creasing, object recognition applications are becoming

increasingly computationally intensive, requiring hundreds of
giga operations per second (GOPS). Examples of such appli-
cations include augmented reality, image retrieval/reconstruc-
tion and scene analysis. Since these computationally complex
applications are now being implemented in mobile vision plat-
forms that are constrained by form factor, processing delay and
power dissipation, a dedicated processor is necessary to obtain
30 frame/sec application throughput and sub-Watt power con-
sumption with HD (720p or 1080p) video streams. However,
the scale invariant feature transform (SIFT) [1]-based object
recognition algorithm, which is popular for its invariance to
scaling, rotation and illumination, is computationally complex
due to its heavy workload required in local feature extraction
and matching operation. As a result, conventional vision pro-
cessors fail to achieve real-time performance while sustaining
low power dissipation simultaneously.
Even the latest multi-threaded CPU [2] is only capable of

achieving 4.48 frame/sec when performing SIFT-based recog-
nition on 720p video, due to the limited computing power far
below 100s of GOPS. Conventional single-threaded RISCs or
VLIW DSPs [3] are even worse than this. In contrast, the ex-
tensive data-level parallelism (DLP) of GPU [4] or multi-core
processors [5] which integrate multiple single instruction mul-
tiple data (SIMD) or single instruction multiple thread (SIMT)
processing units, enable them to achieve high computing power
of 100s of giga floating operation per second (GFLOPS),
although at the cost of high power consumption approaching
200 W, which is far beyond power budgets of a mobile vision
system. Thus, massively parallel DSPs, including IMAPCAR
[6] and Strom-1 processor [7], are proposed to exploit high
DLP with minimized power dissipation for specific applica-
tions, and achieve power efficiency of 50 GOPS/W and 24.4
GOPS/W respectively. However, their achievable computing
power within limited power budget of mobile platforms is still
insufficient for HD video-based object recognition, one of the
most complex vision applications. Considering these problems
of conventional vision processors, a new vision architecture

Fig. 1. On-chip memory bandwidth and computing power analysis of
tile-based SIFT implementation.

should possess not only exceedingly high computing power but
also high power efficiency for real-time SIFT implementation
in mobile vision platforms.
Furthermore, since the tile-based SIFT implementation in a

vision processor requires 60–150 GB/s on-chip bandwidth and
10–25 GB/s off-chip bandwidth for HD-based real-time object
recognition due to its massively parallel architecture for high
computing power, not just minimizing the number of off-chip
accesses but also sustaining high utilization of on-chip band-
width is important for a vision processor. Thus, high on-chip
bandwidth of a highly parallel processor must be sustained
based on high datapath utilization and network bandwidth in
each core when performing compute-intensive operations such
as convolution, cascaded feature extraction, and long-latency
feature matching, so that the maximum possible throughput
can be achieved.
With consideration of theses design constraints, in this

paper, we introduce a real-time low-power object recogni-
tion processor which achieves 30 frame/sec throughput and
sub-Watt power consumption for 720p video streams. A new
visual attention-based object recognition algorithm is proposed
that reduces more than 33% of the entire workload to relax
the required computing power and on/off-chip bandwidth.
It helps the vision processor overcome many of the above
challenges in conventional SIFT implementation. In addition,
the network-on-chip (NoC)-based heterogeneous multi-core
architecture is proposed to obtain high computing power by
utilizing different ILP, DLP and thread-level parallelism (TLP)
of multiple processing cores. Lastly, we integrate a dynamic
resource management (DRM) technique into the heterogeneous
multi-core processor to minimize the power consumption of
the processor as well as to increase utilization of on-chip
bandwidth.
The rest of this paper is organized as follows. Section II de-

scribes the attention-based recognition algorithm and the high-
lights of the proposed architecture compared to the related ar-
chitectures for vision applications. In Section III, the system ar-
chitecture of the processor will be explained. The detailed core
implementations will be covered at Section IV. Section V dis-
cusses the design and advantages of the DRM of the processor.
The chip implementation and the system evaluation follow in
Section VI. Finally, Section VII concludes this paper.
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Fig. 2. Operation diagram of the context-aware visual attention model.

II. BACKGROUND

A. Algorithm

The tile-based object recognition has been adopted to in-
crease the system throughput by executing multiple recognition
threads on different decomposed tiles in parallel. In addition,
the attention operation was adopted to filter out the meaningless
tiles with no object features and focus on the tiles containing
object features as region-of-interests (ROIs). It helps the SIFT
implementation increase its throughput and reduce power
consumption by reducing the number of processing tiles
dramatically. Previous attention model [8], which exploited
not only the bottom-up conspicuity information but also the
top-down object familiarity between the query and target
objects in database (DB), obtained 35% background clutter
tile rejection on average and 30% processing speed increase
without any recognition accuracy degradation for 640 480
image-based object recognition.
However, when dynamic noises, such as motion blur, illumi-

nation and occlusion, fade SIFT features way from captured im-
ages, the previous model suffers from severe attention accuracy
degradation and fails to accommodate HD object recognition
due to its highly demanding computing power incurred from
increased ROIs in an image. In order to solve this problem, we
present more accurate attention algorithm to reduce the number
of processing tiles further with increased processing speed.
Fig. 2 shows the proposed attention model for the HD object

recognition in a mobile vision system, named context-aware
visual attention model (CAVAM). The CAVAM integrates
temporal familiarity which measures the temporal coherence
of consecutive frames by tracking and prediction of the recog-
nized objects in addition to the previous saliency and object
familiarity. That is, the familiarity map reflects not only the
spatial conspicuity but also temporal continuity so that the
obtained ROI can track the target object movement accurately
irrespective of dynamic noises. For example, the 77% loss of
total SIFT features in an image by dynamic noises generates
3.3 times increase in the number of ROI tiles in the previous

attention model, and requires additional GOPS com-
puting power and GB/s on-chip bandwidth. However, in
CAVAM, the required computing power and on-chip bandwidth
are reduced by 16% and 46% respectively thanks to 1.44 times
higher attention accuracy for dynamic object recognition with
HD video streams on average. Thus, the 4.8% extra on-chip
bandwidth for temporal familiarity generation is negligible
compared to the performance gain.

B. Related Works

The proposed object recognition processor has some char-
acteristics of application specific hardware accelerators such
as IMAPCAR [6] and National Taiwan University’s machine
learning SoC [9]. In these systems, a highly parallel SIMD
architecture and a high bandwidth dual memory architecture
are adopted to accelerate in-vehicle image recognition and
K-means clustering algorithm respectively, restricting redun-
dant data computations and memory accesses for their targeted
applications. However, unlike those application specific pro-
cessors, the proposed processor is also optimized for general
stream processing with application characteristics such as
compute intensity, data parallelism, and produce-consumer
locality [10] similar to CELL [11], GPUs [4] and the Strom-1
processor [7]. CELL includes data-parallel synergistic pro-
cessing units, GPUs support many lightweight data-parallel
threads, and the Strom-1 processor utilizes an optimized ALU
and memory architecture for kernel and stream data processing
with different ILP and DLP. In terms of its chip multiprocessor
(CMP) or multi-core architecture, the proposed streaming
architecture is more like Intel 80-Tile processor [12] and
Toshiba’s eight-core media processor [13] that process streams
as threads in different cores. These multi-core processors ex-
ploit a packet-switched NoC and pipeline-based/thread-based
parallel execution schemes for high computing power respec-
tively. In comparison to those processors, while exploiting the
high-performance technologies of the multi-core architectures,
the proposed processor is much more power efficient due to
its use of fixed-point ALUs instead of floating-point ALUs as
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Fig. 3. Block diagram of the proposed multi-core processor for dynamic object recognition.

well as its use of 2-D direct memory access (DMA)-integrated
NoC interfaces instead of a cache-based memory system that
requires a power-hungry hierarchical memory architecture.
Therefore, the processor can achieves higher computing power
with lower power consumption compared to the multi-core
processors [12], [13] and, also, SIMD-based parallel machines
such as IMAPCAR and Xetal-II [14].
The previous generation of our vision processor [8] was de-

signed to realize real-time object recognition for VGA images
by employing a heterogeneous multi-core architecture con-
taining SIMD and multiple instruction multiple data (MIMD)
processing units in parallel. However, since its performance is
not proportional to the number of processing cores due to its
limited throughput and bandwidth of the top architecture, this
processor is not capable of object recognition on HD 720p video
streams. Thus, this chip adopts a dual-threaded SIMD/MIMD
core cluster and latency/power optimized cores in addition to
the NoC-based heterogeneous architecture by taking advan-
tages of a new fine-grain object recognition pipeline. Coping
with the machine learning-based DRM, the high level of ILP,
DLP and TLP in the processor can realize object recognition
for HD 720p video streams with enhanced throughput and
power-efficiency for advanced mobile vision applications.

III. SYSTEM ARCHITECTURE

The proposed processor is based on a heterogeneous
multi-core architecture for low-power real-time object recogni-
tion in a mobile vision system [15]. Achieving high computing
power with low power consumption, the processor adopts sev-
eral system-level technologies for high on-chip bandwidth with

increased datapath utilization. It integrates a hierarchical NoC
architecture with GB/s aggregate on-chip bandwidth and
heterogeneous processing cores with GOPS computing
power, which is measured by 8-bit integer operation, required
for 720p video-based object recognition.
Even though CAVAM reduces 16% computing power and

36% on-chip bandwidth of HD object recognition, it is still dif-
ficult to satisfy the requirements at the same time in a vision
processor. Thus, the proposed processor employs the 5-stage
task-level pipeline and the simultaneous multithreading (SMT)
[16] operations of ROI tile processing to increase the throughput
of tile-based object recognition in CAVAMby increased ILP and
TLP of the multi-core architecture. Furthermore, it integrates
different types of parallel processing cores in a NoC architec-
ture to reduce the processing delay of each pipeline stage as well
as the visual attention stage in CAVAM, thereby achieving high
computing power and on-chip bandwidth required in HD object
recognition. For power efficiency of a mobile vision platform,
resource management technique is applied to increase hardware
utilization and throughput and to reduce power dissipation of
idling cores. Using these technologies, the proposed mobile vi-
sion processor achieves 342 GOPS computing power and 640
GOPS/W power efficiency as well as 83.3 GB/s on-chip band-
width required in CAVAM-based object recognition on 720p
HD video streams.

A. SoC Architecture

Fig. 3 shows the overall block diagram of the proposed SoC.
It contains of 4 simultaneous multithreading feature extraction
cluster (SFEC) for SIFT feature extraction operation, a feature
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Fig. 4. (a) 5-stage fine-grain pipeline stages and (b) its pipeline operation with increased hardware utilization.

matching processor (FMP) for matching operation with SIFT
descriptors in DB, a machine learning engine (MLE) for atten-
tion operation of CAVAM, a dynamic resource controller (DRC)
for DRM implementation, and an external interface (EXT I/F)
for NoC-based off-chip communication. Each core is connected
by a hierarchical star-ring NoC [17] which 8 8 top router can
obtain 640 MB/s/port theoretical bandwidth in respective direc-
tions. The local ring network that connects 4 SFEC cores with
maximum 1-hop latency reduces top NoC occupancy of SFEC
for congestion avoidance.
In the SFEC, one dual-threaded vector processing element

(DVPE), integrating one 16-lane data-parallel SIMD processing
element, and four scalar processing elements (SPEs) are con-
tained together using a local NoC router. Once the 4 SFECs
carry out feature extraction operation, then the FMP performs
the following matching operation, which requires external
memory access with minimized latency, for the extracted SIFT
feature descriptors. The MLE is designed to realize several
functions required in CAVAM by using its reconfigurable
architecture with minimized power dissipation.
The DRC is the main controller which accounts for

throughput and power consumption of the multi-core processor.
It contains a task management unit (TMU) for software-man-
aged workload allocation, a dynamic voltage and frequency
scaling (DVFS) [18] controller for optimization of power dissi-
pation in the SoC, a network-on-chip (NoC) controller for sus-
taining high NoC bandwidth, and a ARM10-based host RISC
processor. With the help of the DVFS and NoC controllers, the
TMU enables the maximum aggregate on-chip bandwidth for
the object recognition processor reaches 83.3 GB/s.

B. 5-Stage Task-Level Pipeline

In order to realize the CAVAM for 720p HD video streams,
the 5-stage task-level pipeline is proposed to accelerate overall
processing speed of feature extraction and matching operation
for 16 16 image tiles. The feature detection of previous SIFT
algorithm [8] is divided into 3 fine stages, namely, Gaussian

filtering (GF), difference of Gaussian (DoG), and localization
(LOC), which are 3 main procedures of SIFT scale space gen-
eration and extrema detection. Along with conventional feature
description (FD) and feature matching (FM) stages, the 5-stage
object recognition is implemented to increase ILP/TLP with
high system utilization as shown in Fig. 4(a). The DVPE per-
forms GF, DoG and LOC with different special function units
(SFUs) respectively, and the SPE and FMP perform FD and FM
respectively. Fig. 4(b) shows the operation diagram of the pro-
posed pipeline. Thanks to the increased datapath utilization of
SFEC to 0.92 by this pipeline, the overall processing throughput
of the SIFT pipeline is increased by 1.67 times compared to the
conventional 3-stage pipeline.

C. SMT-Based SIFT Implementation

In SFEC, the SMT is adopted to process multiple ROI tiles at
the same time for squeezing system throughput further out of the
object recognition pipeline. Conventional singled-thread SIMD
core suffers from low-datapath utilization of less than 0.3, since
only small part of ALUs in each lane of SIMD core is acti-
vated for decoded instructions. Thus, to minimize the wastage of
power and processing time, the SIMD unit is segmented into 3
different SFUs to support SMT operation, and the SFUs are cor-
responding to the GF, DoG and LOC respectively. Fortunately,
the each ROI tile is totally independent to each other so that it
is possible to exploit producer-consumer locality of tile-based
SIFT processing.
Fig. 5 shows the proposed SMT-based SIFT implementation

using SFECs. When the visual attention operation determines
the ROIs from the image, the 128-entry TMU software queues
accumulates the 32-bit pointers of image tiles and the TMU
fetches image tiles from the external DRAM and to SFECs as a
thread scheduler. The SFEC is designed to perform 3-stage fea-
ture detection operation for the maximum two threads simulta-
neously. The theoretical peak IPC of SFEC datapath is 1.92, and
this can increase the throughput of overall architecture by 1.43
times compared to single-threaded SFEC. Thanks to the NoC
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Fig. 5. Proposed SMT-based SIFT implementation using SFECs.

and SMT, the out-of-order execution of ROI-based SIFT opera-
tion can be easily implemented without complex scheduling and
re-order buffer. With only 12% extra area overhead and 9.9 mW
extra power consumption for a simple context switching con-
troller, 16 general purpose registers, and 20 kB extra memory,
the SFEC achieves at least 30% processing delay reduction for
an ROI tile processing of 100–1000 instructions in an inner loop
and 2.8 times processing speed increase for 10–100 ROI tile se-
quences based on hiding data fetch delay as well as increased
pipeline stages. As a result, thanks to the dual-threaded pro-
cessing of 8 ROI tiles and the fine-grain pipeline with increased
throughput of 4 SFECs, the average performance of the pro-
posed architecture reaches 47700 tiles/sec for feature extraction
of SFEC and 62720 vectors/sec for the matching operation of
FMP respectively.

IV. CORE ARCHITECTURE

A. Dual-Threaded Vector Processing Element

The detailed architecture of DVPE is depicted in Fig. 6, con-
sisting of 3 SFUs for a 16-lane data-parallel SIMD unit. For 2
different threads, the SIMD datapath utilization can be increased
to 0.92 on average for SIFT feature detection. Since each thread
or an image tile in tile-based recognition is totally independent,
data consistency and race condition of two threads can be elim-
inated by isolating each memory space. Therefore, the SFEC
contains 2 16 kB DMEM and 4 kB IMEM for different threads

Fig. 6. Details of DVPE architecture of SFEC.

which are executed with unraveled dependency between con-
secutive pipeline stages. The GF unit performs scale space gen-
eration for 2-D Gaussian filtering with different size of kernels,
realizing 5 scale spaces of each octave with a 16 16 tile. For
memory access reduction, the lane size of SIMD unit is opti-
mized for 1-D convolution size, which substitutes for redun-
dant access pattern of 2-D Gaussian filtering by line-wise op-
eration. And also, the one-cycle-latency 3-operand MAC unit is
employed for 1-D convolution operation which incurs 3.1 times
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Fig. 7. Hardware diagram of proposed feature matching operation.

speed-up for Gaussian filtering and 15% throughput increase in
SFEC pipeline. With the help of proposed technique, the DVPE
can obtain 1.46 IPC and 0.82 utilization, which are 1.87 times
and 2.7 times improvement respectively. As a result, the pro-
posed DVPE can perform feature extraction operation for an
ROI tile within 15000 cycles, 3.45 times improvement from the
previous SIMD core [8].

B. Feature Matching Processor

Fig. 7 shows the hardware diagram of the cache-based FMP
for keypoint matching with the zero-less locality sensitive
hashing (ZLSH). Since more than 80% of matching delay is
consumed at external DB access for feature searching, mini-
mization of keypoint searching regions in DB is essential to
increase matching throughput as well as the overall recognition
speed. To this end, in FMP, there are two keypoint matching
mechanism; the primary cache-based matching (CBM) and
the secondary DB-based matching (DBM). The CBM uses the
keypoints which are previously used at the last matching and
stored in the keypoint cache for searching the nearest neighbor.
If the keypoint is matched, the matching ends with 98% reduc-
tion of external accesses. If the keypoint is not matched, the
additional DBM is performed with the ZLSH index to access
the candidate keypoints of DB, which still results in 86% access
reduction than the brute-force matching.
The 16 kB inter-frame cache is implemented with 4-way set

associative structure since each way is corresponding for 32
keypoint vectors and the size of a cache line is 128-byte cor-
responding to the size of a keypoint vector. The 32 kB vector
memory contains the detected keypoint vectors for the ROIs that
are compared with cached vectors through the 128-way SAD
array for CDM. The 1024-bit wide 1 kB configuration SRAM
is used as operand register files to reduce redundant memory
access for higher throughput. The hashing accelerator and a 10

kB hash table are implemented to realize ZLSH to minimize
the degree of uneven binning of hashing for maximum reduc-
tion of external memory access, and achieve 64% reduction in
the largest bin size compared with previous locality sensitive
hashing [19]. As a result, it only consumes less than 3.2 s on
matching a keypoint with DB for the proposed task-level object
recognition pipeline.

C. Machine Learning Engine

The architecture of MLE is as shown in Fig. 8(a) and it is
designed for accelerating CAVAM’s Kaman filter operation
and DRC’s reinforcement learning algorithm with different
processing granularity to optimize power consumption. The
architecture of the MLE is very similar to application specific
reconfigurable processors, such as ADRES [20], Montium
Tile processor [21] and eXtreme Processing Platform (XPP)
[22], which adopts coarse-grained architecture for multimedia
and communication applications. They exhibit high level of
ILP and/or DLP but less control flow. The MLE also utilizes
data-parallel, compute-intensive operations by adopting SIMD
computation model. The ALU of SIMD processing core is
optimized for sub-word-level operations, including ADD,
SUB, MUL and SHIFT, supporting one shared instruction set
architecture.
In terms of reconfigurable processing core architecture, the

MLE is analogous to the MorphoSys [23] which comprise the
reconfigurable cell arrays, an RISC control processor, context
memory, frame buffer and DMA controller. Similarly, the
MLE adopts 4 4 reconfigurable processing element (PE)
arrays, consisting of 16 reconfigurable processing elements
(RPEs), and 32 kB kernel memory for parameter operands,
a light-weight control RISC processor for reconfiguration
control and instruction fetch/decode. A RPE is composed of 4
processing elements to modify the parallelism of MLE which
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Fig. 8. (a) The architecture of machine learning engine and (b) block diagram
of reconfigurable processing element.

possesses 8 bit-resolution granularities for different operations.
The block diagram of RPE is depicted in Fig. 8(b). The 4
processing elements can be reconfigured from 8-bit resolution
pixel-level operators to 32-bit resolution complex sequential
learning operators. Each processing element can propagate
result data to the next processing element as new operand.
As a result, different bit-resolution of 8/16/24/32-bit pro-

cessing element can be applied for different types of target

algorithms with minimized power consumption. For example,
in two extreme cases, such as 16 32-bit configuration for high
precision learning algorithm and 64 8-bit configuration for
pixel-level operation of saliency map generation, the power
consumption varies from 33 mW to 123 mW, while reducing
at most 71% of unnecessary power dissipation on un-used
registers and ALUs compared to the SIMD-core based imple-
mentation. In addition, it only takes 4.4 ms based on 12.5 16-bit
giga multiply-accumulates per second (GMACS) for running
reinforcement learning algorithm of DRM.

V. DYNAMIC RESOURCE MANAGEMENT

DRM [24], which is famous technology adaptively tuning
hardware resource of multi-core processors or data centers,
is employed to handle workload allocation and voltage and
frequency configuration of the proposed architecture. The
DRC operates the DRM operation with its sub IPs as hardware
resource controller. The TMU performs ROI tiles allocation for
DVPE and keypoints allocation for SPE and FMP to sustain
maximum throughput by keeping the core from going idle
frequently. Coping with the TMU’s workload allocation, the
DVFS controller and NOC controller is configured according
to the performance margin for the 30 frame/sec real-time
requirement. Since the implemented processor is designed to
satisfy the maximum workload scenario of actual use cases, a
large power saving through aggressive voltage and frequency
scaling can be obtained by DRM.

A. DRM Implementation

Because the configuration is carried out based on one thread
which is a 16 16 ROI tile-based SIFT operation, the DRM
of the object recognition processor needs less than a few s
response time, or 10–500 cycles. Therefore, we adopt hard-
ware-implemented DRC with software programmability with
about 100 times speed-up compared to the middleware-based
approach [25]. While using the on-line learning ability of MLE,
the DRC can change the throughput and power characteristics
of multi-core system with precise workload prediction for
better energy efficiency as shown in Fig. 9. The DRC adjusts
the power management configuration of SFEC based on the
amount of ROIs, , and utilization per frame, . Since the
dynamic resource management can estimate the optimized
state transition point by adopting reconfigurable thresholds,

and , of ROI and utilization the optimum energy and
throughput management can be selected by one of three dif-
ferent configurations; C0: DVFS, C1: DVFS multithreading
(MT), C2: DVFS MT dynamic tile allocation (DTA). The
DTA will be discussed on the following sub-section for uti-
lization control. Based on the configurations, the multi-core
architecture can change its throughput and power efficiency
to sustain 30 frame/sec with lowest energy consumption. The
control parameters, which are 2 state transition thresholds
and 2 energy configuration ROI points, are updated by with
Q-learning-based on-line learning operation [26] to minimize
DRC miss prediction rate less than 2.2% for prohibiting se-
vere performance degradation. As a result, 9.6 mJ/frame or
10.5 nJ/pixel energy efficiency can be obtained with 320 mW
average power consumption.
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Fig. 9. Operation diagram of dynamic resource management.

Fig. 10. (a) System diagram of NoC-based DVFS implementation and (b)
DVFS-aware NoC router architecture.

B. NoC-Based DVFS Implementation

Fig. 10(a) shows the NoC-based DVFS implementation of the
proposed processor. It has 6 different voltage-frequency islands
(VFIs), including one global island for the top NoC router, the
MLE and the DRC and 5 different local islands for SFECs and
a FMP core. When there is packet transition between two dif-
ferent cores, the level shifting and the synchronization have to
be performed for different power and clock frequency domains.

To simplify the implementation complexity and increase system
robustness, the monolithic design of NoC router is proposed by
merging a level shifter and synchronizing dual-clock FIFO at
the TX and RX ports of NoC. The DRC configures each local
VFI from 0.7 V–1.2 V VDD range, and 50 MHz–200 MHz op-
erating frequency range by using the external switched-mode
power supply IC and the PLL. For higher throughput of the
NoC, the proposed switch can configure the priority ports of the
weighted round robin arbiter based on the DRM configuration
to reduce the packet conflicts.
The proposed NoC router architecture is shown in Fig. 10(b).

An arbiter controls the cross fabric to connect input ports to
output ports and each port contains 38-bit wide and 8-words
deep queues. The network interface supports 640 MB/s/port
bandwidth at 200 MHz to all the switches in the respective di-
rections. As Philips’ Æthereal NoC [27], the proposed compact
NoC router is designed with simple packet switching but ob-
tains high processing speed only with 0.31mm for the 8 8 top
switch. Thanks to the monolithic NoC routers, the hierarchical
star-ring network can be easily implemented without extra IP or
back-end support, supporting multi-core DVFS system.

C. SFEC Utilization Control

To achieve highest SFEC throughput for SIFT feature extrac-
tion along with the 5-stage task-level pipeline, the utilization of
each processing core should be sustained as high as possible. In
order to increase utilization of total 4 DVPEs and 16 SPEs of
4 SFECs, the processor adopts the DTA based on the distance
between processing ROIs.
Since the neighboring 8 tiles of the ROI tile are additionally

required to perform the scale space generation, at most 6
of 9 processing ROIs tiles can be shared with the next ROI
processing. Based on the ROI distance which indicates the
number of tiles that can be shared between two different ROI
processing, the TMU performs the DTA of ROI tiles to the
SFECs by utilizing different sustained bandwidth between
SFEC cores, such as 3.2 GB/s internal data channel of SFEC,
512 MB/s/port local ring NoC, and 426 MB/s/port top star
NoC. Through the internal bus and local NoC, the shared tiles
can be rapidly transferred between two different ROI threads,
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Fig. 11. Measurement results of throughput enhancement by MLE operation.

as a result, the DTA can increase 17% processing speed by
reducing top channel occupancy compared to the conventional
sequential thread allocation.

D. On-Line Learning-Based Energy Control

With the help of MLE, the DRC can perform on-line learning
based dynamical resource control to minimize the power
consumption for the different amount of tasks in each frame.
After deciding the number of ROIs in the image by attention
process, the DRC can measure the required timing margin to
process all ROIs so that it configures the thread allocation and
DVFS strategy based on the DRM policy. The MLE performs
on-line learning operation for varying patterns of the current
task and the hardware utilization of processing cores to estimate
optimized hardware resource and power margin for the current
frame.
The measurement result of the DRC operation for 30 contin-

uous HD video frames is shown in Fig. 11. The number of ROIs
for frames is fluctuating as 50–1800 that possibly incurs perfor-
mance degradation or power wastage. Therefore, the MLE up-
dates the new energy configuration point based on the optimized
throughput and power consumption for its task. For the given
test frames, it updates two thresholds, and , and two
ECPs of DRM policy as control parameters by on-line learning
of ROI variation as a monitoring parameter. Then, the power
and throughput are updated to provide optimized system per-
formance based on four parameters of DRM. For the test video
scene, the updated control parameters of
enable the processor achieve 279 mW average power consump-
tion and 14341 tiles/sec throughput. As a result, the DRC ob-
tains 1.3 times higher frame rate and 66% energy reduction com-
pared to the static allocation.

VI. IMPLEMENTATION AND EVALUATION

A. Chip Summary

The proposed chip in Fig. 12 is implemented with 0.13 m
CMOS process and occupies 32 mm with 2.4 M NAND2 gate
count of and 382 kB on-chip SRAM. Table I summarizes the
chip specification. A total 31-IP multi-core processor consumes

Fig. 12. Chip microphotograph.

TABLE I
CHIP SPECIFICATION

534 mW peak power and 320 mW average power with 0.7–1.2
V and 50 MHz–200 MHz DVFS configuration. For 8-bit 342
GOPS peak performance, this chip achieves 10.69 GOPS/mm
area efficiency and 640 GOPS/W power efficiency and, for ap-
plication, obtain 9.6 mJ per-frame energy efficiency and 10.5 nJ
per-pixel efficiency.
Table II lists the comparison of four vision processors which

have similar vision applications with this work. As compared
with four architectures, namely, CMOS sensor integrated
camera chip [28], a massively parallel image processor [29]
and our previous arts [30], [8], this work reduces at least
51.5%, 14.8%, 54.6% and 49.3% power efficiency (GOPS/W)
respectively. Thanks to the 5-stage fine-grain pipeline and
SMT-enabled multi-core architecture, this chip obtains 1.5
times higher GOPS, which is 342 GOPS, even with 18%
reduced gate counts compared to our latest work [8]. In ad-
dition, the DRM-based DVFS enhances energy efficiency of
the multi-core processor and enable the chip to obtain 640
GOPS/W consequently. As a result, for object recognition
applications, the obtained 10.5 nJ/pixel energy dissipation is
the lowest ever and 2.54 times less than the state-of-the-art
object recognition processors.
Table III shows the computing power (GOPS) and power

consumption breakdown of the proposed processor with gate
count. The total peak performance amounts 342 GOPS when
534 mW is dissipated. The 4 SFECs, the largest component of
the processor with 1.88 M gate, accounts for the highest 112
GOPS and consume 236 mW, 44% of total power consumption.
The FMP performs 98 GOPS with 86 mW power consumption
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TABLE II
PERFORMANCE COMPARISON WITH RELATED WORKS

TABLE III
BREAKDOWN OF COMPUTING POWER, POWER DISSIPATION AND GATE COUNTS

and achieves very high power efficiency thanks to the dense
functional units of comparison and hashing units. The DRC in-
tegrated with MLE can obtain 132 GOPS of high computing
power for different algorithm realizations while accounting for
32.2% of total power consumption only with 12.3% of total gate
count. The top NoC router and the miscellaneous control cir-
cuits consume 40mW in total with 105 K gates for global switch
communication and IP control operation.

B. System Evaluation

The fabricated chip is integrated with an application mul-
timedia board and applied to the unmanned aerial vehicle
(UAV) system as shown in Fig. 13. The chip is evaluated
in a real demonstration system for 30 frame/sec 720 p video
streams of the UAV. The proposed object recognition processor,
named BONE-V5, is integrated with the Texas Instrument’s
OMAP4430-based multimedia board by using the FPGA ex-
tension board. The video processing, such as capturing and
displaying image is carried out Linux operating system in
OMAP at the main board. The software system of BONE-V5
includes the custom compilers for converting ANSI C-based
SIMD and MIMD core programs into separate assembly codes
and the linker for merging them with custom assembly code
for kernel functions of vision applications. The generated
assembly of each core is managed by the control program
of TMU which also bases the same compiler. Otherwise, the
host RISC program uses the ARM compiler separately due
to its different architecture. The communication between two
processors is conducted through the NoC interface in FPGA,
and the processor can access the 128 MB DDR2 SDRAM and
the 4 MB SRAM in the extension board by the FPGA.

Fig. 13. The mobile vision platform and the UAV-based real demonstration
system.

The recognition accuracy measured in terms of the true
positive rate is approximately 98.2% with a false positive rate
of less than 1.1% for 22 different target objects such as toy
tanks, cars and building miniatures. The recognition accuracy
of the CAVAM is even to the SIFT implementation without
attention operation that obtains theoretical maximum accuracy,
while reducing processing time more than 40%. With the help
of CAVAM, this processor can obtain 73% attention accuracy,
which is 1.44 times higher compared to the previous object
recognition processor [8]. As a result, the CAVAM-based
processor can provide high-quality recognition performance
for 720p HD video applications with low-power consumption.

VII. CONCLUSION

In this paper, we present a real-time object recognition
processor for HD 720p video streams in mobile vision system.
The context-aware visual attention model is proposed to reduce
the on-chip bandwidth of HD video-based object recognition at
least 46%. Along with the proposed 5-stage task-level pipeline
of SIFT-based object recognition, the heterogeneous multi-core
processor employs the simultaneous multithreading clusters
for feature extraction and the latency-optimized matching
processor for feature matching, and achieves 47700 tiles/sec
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and 62720 vectors/sec throughput respectively. With the help
of machine learning engine, the dynamic resource controller in-
creases the system utilization and power efficiency at the same
time. As a result, the fabricated SoC achieves 30 frame/sec
dynamic object recognition for UAV with 720p video streams
while dissipating 320 mW at 200 MHz on average, achieving
2.54 times higher energy efficiency with 10.5 nJ/pixel com-
pared to the state-of-the-art vision processors.
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