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Abstract—A low-power real-time traffic sign recognition system
that is robust under various illumination conditions is proposed.
It is composed of a Retinex preprocessor and an SVM processor.
The Retinex preprocessor performs the Multi-Scale Retinex
(MSR) algorithm for robust light and dark adaptation under
harsh illumination environments. In the Retinex preprocessor,
the recursive Gaussian engine (RGE) and reflectance engine (RE)
exploit parallelism of the MSR tasks with a two-stage pipeline,
and a mixed-mode scale generator (SG) with adaptive neuro-fuzzy
inference system (ANFIS) performs parameter optimizations
for various scene conditions. The SVM processor performs the
SVM algorithm for robust traffic sign classification. The proposed
algorithm-optimized small-sized kernel cache and memory con-
troller reduce power consumption and memory redundancy by
78% and 35%, respectively. The proposed system is implemented
as two separated ICs in a 0.13- m CMOS process, and the two
chips are connected using network-on-chip off-chip gateway. The
system achieves robust sign recognition operation with 90% sign
recognition accuracy under harsh illumination conditions while
consuming just 92 mW at 1.2 V.

Index Terms—Multiscale Retinex (MSR), network-on-chip
(NoC), support vector machine (SVM), traffic sign recognition.

I. INTRODUCTION

O BJECT recognition has been highlighted as a key en-
abler for various applications demanding visual intelli-

gence such as human friendly interfaces, intelligent robots, se-
curity, and automotive vehicle systems [1]–[3]. Among these,
the advanced driver assistance systems (ADAS) is receiving
much attention since it can increase the level of safety as well
as give better experiences to the drivers in vehicle. Recently,
many types of technologies have been investigated to support
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the functions for ADAS. Radar, magnetic referencing, high-ac-
curacy digital maps with GPS, and vision-based techniques are
the key supporting techniques for ADAS, and the intelligent
cars equipped with these techniques can support forward col-
lision detection, front/rear park assist, and blind spot detection
[4]. Among these, the vision-based driver assistance system is
the rapidly dominating technique because the video camera is
an attractive device from the cost perspective, and it can operate
concurrently with radars, which has long ranging capability and
azimuth accuracy, to increase accuracy as well as give additional
functionalities such as traffic sign recognition, object detection,
and classification. However, the vision-based driver assistance
system requires high computing power for image processing
and pattern recognition, and it is difficult to realize the reliable
and robust performance under harsh illumination conditions.
In this paper, we propose a hardware architecture to achieve

robust performance under harsh illumination conditions by re-
solving computationally expensive computer vision algorithms
in a low-power budget. Also, we will show the proposed archi-
tecture can satisfy several requirements of the traffic sign recog-
nition system for ADAS.
Previous multicore object recognition processors [1]–[3]

were able to recognize the traffic signs by using limited
computing power. However, they are vulnerable to harsh
illumination conditions in driving environment such as abrupt
illumination changes in dark tunnels, specular reflections,
smear effect, and backlight effect, as shown in Fig. 1. Bad illu-
mination conditions should be taken into consideration in order
to make recognition processor show no performance degrada-
tion compared with its operation in indoor environments.
The performance of the previous system is degraded due to

the limited dynamic range of their image sensors in the cases
of rapid changes of light intensity. Conventionally, the sensory
issues were addressed to resolve these problems, for example,
reducing sensor noise or stabilization of conversion of electrons
from photons [5]. Even though these approaches were effective
to reduce the effect of sensor noise, there are still some problems
such as the shifting of the intensity offset or limited dynamic
range.
In order to realize the robust traffic sign recognition over-

coming the above problems, we adopt two different algorithms;
Multiscale Retinex (MSR) at the front stage and support vector
machine (SVM) at the back stage of the recognition algorithmic
pipeline. MSR is one of the image enhancement algorithms, and
it shows good performance on dynamic range compression and
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Fig. 1. Harsh illumination conditions in traffic sign recognition.

Fig. 2. Overall algorithm and hardware mapping.

color restoration [6]. It is basically based on the idea that human
being can easily see individual objects both in the sunlight and in
shadowed area, since the eye locally adapts to the abrupt change
of light intensity. It improves the contrast, brightness, and per-
ceived sharpness of the input images so that, in the next feature
extraction stage of the recognition pipeline, more deterministic
features can be obtained for the better object recognition. The
SVM is well known for its classification accuracy [7] because
it tries to maximize the margin of classification decision rather
than to minimize the classification error in other classifiers when
training. Even though the algorithms, MSR and SVM, have su-
perior classification accuracy, they were rarely used in the mo-
bile applications due to their demanding requirement of com-
puting power.
In this paper, the proposed system exploits two key features

to realize these algorithms for the reliable and robust real-time
traffic sign recognition under harsh illumination conditions.
First, the Retinex preprocessor is designed to realize the MSR
algorithm with recursive Gaussian engine (RGE), reflectance

engine (RE), and a mixed-mode scale generator (SG) using
adaptive neuro-fuzzy inference system (ANFIS). Second, the
SVM processor realizes the SVM algorithm with a support
vector kernel engine (SVKE) using an algorithm-optimized
kernel cache, and support vector search engine (SVSE) with
proposed header combined database structure. The scalable
network-on-chip (NOC) interface is proposed to integrate the
two chips on a single board by the off-chip gateway to realize
30-frame rate of traffic sign recognition. It provides the commu-
nication capacity with 640-MB/s maximum bandwidth and the
NOC protocol also supports the connectivity with our previous
platforms [1]–[3] so that other platforms can optionally use
SVM or MSR for their functional extension.
The remainder of this paper is organized as follows. Section II

explains the overall system algorithm. Detailed architectures of
the Retinex preprocessor and SVM processor are described in
Sections III and IV, respectively. Then, Section V describes the
scalable NoC, implementation, and evaluation results of the pro-
posed system. Finally, Section VI summarizes the paper.
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Fig. 3. (a) BDT-based SVM. (b) Performance comparisons of multiclass SVMs.

II. SYSTEM ARCHITECTURE

A. Overall Algorithm

In order to achieve reliable and robust traffic sign recognition
even for the scenes under dynamically changing illumination
conditions, we present an integrated algorithm, which adopts
MSR and SVM. The sequence of algorithms explained above
and their corresponding hardware are described in Fig. 2. It
consists of three functional stages for the robust traffic sign
recognition system: image enhancement, feature generation,
and vector classification. In the first stage, it performs MSR
algorithm which includes three different Gaussian filtering and
reflectance image calculation in the Retinex processor. The
selection of parameters, Gaussian filtering, and reflectance cal-
culation are performed in separated accelerators, respectively.
Through the inter-chip network connection, the enhanced

image from Retinex Processor is now processed in feature gen-
eration and vector classification stages. The feature extraction
is divided into 2 steps, which are outer extraction and inner
vector generation and they are processed in the accelerator
which is called Feature Extraction Engine (FFE). In the vector
classification stage, Support Vector Kernel Engine (SVKE)
and Support Vector Search Engine (SVSE) in the Recognition
processor accelerate SVM tree traversal to achieve the real-time
SVM operation. After the SVM operation, it finally achieves
the recognition result.
Different from previous recognition processors [1]–[3], the

proposed system additionally includes the image enhancement
stage, the MSR, for the first stage, to adapt harsh illumination
changes. This stage generates the enhanced image as a result
which helps accurate feature extraction in the next stage. The
main idea of the MSR algorithm is that the reflectance or true
color of object can be obtained by subtracting the illumination

from the perceived brightness, or lightness. The illumination
can be deduced from the average value of surrounding pixels.
As a result, the basic form of the Retinex algorithm is given by

(1)

(2)

where the subindex represents each channel of image and is
the total number of channels, for example, for a grayscale
image and for typical color image. The represents
the surround function usually given as the Gaussian function
like (2), which is used for calculating the illumination. and
represent the input and output image, or called reflectance,

respectively.
In this algorithm, it is critical to select the appropriate scale

parameter , which determines the extend amount of the sur-
round for each scene. As gets smaller, the detail expression
of the image gets sharper, and, on the other hand, bigger re-
sults in natural color rendition. The problem is how to find the
appropriate scale parameter for the given scene:

(3)
MSR, as shown in (3), uses three different kinds of the scale

parameters and sums up the corresponding images to achieve
a balance between dynamic range compression and tonal ren-
dition whereas Retinex uses only one scale parameter. How-
ever, the problem still remains because the values of three scale
parameters are still too sensitive to the scene variation. In this
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Fig. 4. Block diagram of the proposed traffic sign recognition system.

work, we use neuro-fuzzy inference algorithm with three types
of statistical data from image to estimate the optimal scale pa-
rameters without any manual tuning. It is performed by the
mixed-mode Adaptive Neuro-Fuzzy Inference System (ANFIS)
and will be explained later in Section III.
After then, the feature extraction is performed in two steps

based on the MSR processed image: outer extraction and inner
vector generation. Because the traffic signs are designed for easy
identification using different symbols, colors and shapes, the
contour extraction stage generates the region-of-interest (ROI)
for feature description based on these specific characteristics
by template matching. Then, the inner vector description using
scale-invariant feature transform (SIFT) [8] extracts some fea-
tures from a local image region. In general, the traffic sign com-
prises only a part of the entire image and the SIFT description is
performed in this small region. Therefore, in this work, it is pos-
sible to perform the SIFT-based feature description in real-time
without time overhead.
Finally, the extracted vectors are classified by SVM. SVM

takes a set of input vectors, which are called as support vec-
tors (SVs), so that the vectors of the separate classes can be di-
vided by a maximum margin that is as wide as possible. Since
SVM is a binary classifier, multiple SVMs should be used to-
gether in order to classify multicategories. A variety of tech-
niques for classifying a multicategory classification problem
using binary classifiers have been proposed [9]–[11]. There are
three representative methods of forming multi-category clas-
sifier using SVM: 1-vs-ALL, 1-vs-1, and binary decision tree
(BDT). In 1-vs-ALL method, it constructs two-class SVM

classifiers for a -class problem. Each SVM is trained while la-
beling the samples in one class as positive and the remaining
samples as negative. In the 1-vs-1 method, it constructs

two-class SVM classifiers for a -class problem. It use all
the binary pair-wise combinations of the classes, and each
SVM is trained while labeling the samples in one class as pos-
itive and the sample in another class as negative. In the BDT
method, it constructs a binary decision tree while each node of
the tree is SVM which divides the samples into two categories.
Among several multi-class implementations, the BDT-SVMhas
relatively low complexity as compared with 1-vs-1
and 1-vs-all, which have the complexity of and ,
respectively [11].
In this work, the BDT-based SVM is adopted for multi

traffic sign recognition. Fig. 3(a) shows the algorithm flow
of the adopted BDT-based multiclass SVM. By adopting the
BDT-based SVM and optimized learning techniques, the clas-
sification and learning time are 14 times faster and 15.4 times
faster, respectively, than conventional learning algorithms as
shown in Fig. 3(b).

B. Overall Architecture

Fig. 4 shows the overall block diagram of the proposed
system, which performs the proposed traffic sign recognition
algorithm combiningMSR and SVM. The Retinex preprocessor
performs MSR algorithm for illumination adaptation, and SVM
processor performs SIFT-based feature extraction and SVM
classification. The Retinex consists of the recursive Gaussian
engine (RGE), Reflectance Engine (RE), and a mixed-mode
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Fig. 5. Two-stage pipelined architecture for MSR implementation.

scale generator (SG) with ANFIS [12]. SG measures the sta-
tistical data of the given image, which is down-sampled to
80 60 and classifies it into one of the illumination levels by
fuzzy inference. Then, SG determines the scale parameter ac-
cording to the classified illumination level. The content-aware
neuro-fuzzy inference in SG brings the better feature extrac-
tion result by deciding the scale parameter of MSR algorithm
automatically.
The MSR algorithm is organized into two stages, Gaussian

filtering and Reflectance acquisition, which will be explained in
detail in Section III. RGE performs recursive Gaussian filtering
with low hardware overhead as the parameters of the Gaussian
filter are changing [13]. After Gaussian filtering, RE executes
the reflectance acquisition. The execution times of RGE and
RE are adjusted equally by performing Gaussian filtering in
the recursive method and executing Reflectance acquisition in
paralleled.
The generated image after performing MSR algorithm is

transferred to the SVM processor for the feature extraction and
recognition of the traffic signs. The SVM processor consists of
the feature extraction engine (FEE), the SVKE, and the SVSE
as shown in the bottom of Fig. 4. The FEE extracts only the
traffic signs from the image and generating SIFT-based feature
vectors. FEE again consists of two blocks: contour extractor
(CE) and inner encoder (IE). The CE selects the region of
the traffic sign while rejecting regions containing the other
distractors. In the CE, the outer edge of a specific color, such
as red or blue, is traced and only ROIs of the traffic sign are
segmented in a tile-based approach [3]. The IE generates the
SIFT-based feature descriptors of the segmented ROIs. After

Fig. 6. Processing time reduction by two-stage pipelined architecture.

the feature description is completed, the feature vector is clas-
sified by SVKE, which performs SVM algorithm for feature
vector classification. In order to implement SVM function to
meet the real-time requirement, a lookup-table (LUT) kernel
cache is adopted in SVKE. SVSE controls the massive call of
the support vectors from the SVKE with the 64-bit header and
160-bit attributes, and logics.
The Retinex preprocessor and SVM processor are im-

plemented in separate ICs and communicated through NoC
off-chip gateway on the board. The two proposed chips use
the same network interface on the off-chip gateway, which
has been used in the previous object recognition chips [1]–[3].
The 16-depth first-in–first-out (FIFO)-based synchronization
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Fig. 7. (a) Gaussian Engine in conventional and recursive method. (b) Required bit resolution. (c) Effectiveness of RGE features.

Fig. 8. Effects of the scale parameter on SIFT feature extraction.

switch is redesigned in the top switch for communication
stability and bandwidth requirement. The protocol interface
of NoC is compatible to [1]–[3] so that the proposed pro-
cessor can fully communicate with previous object recognition
chips for application extension. The details of two processors,
Retinex preprocessor and SVM processor, will be explained in
Section III.

III. RETINEX PREPROCESSOR

A. Two-Stage Pipelined MSR Algorithm

In this study, MSR is divided into two operation stages,
Gaussian operation and reflectance. The former is performed
by RGE and the latter is performed by RE in the Retinex
preprocessor. Gaussian operation can estimate the illumination
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Fig. 9. SG with ANFIS.

of the given image because common feature of the image like
illumination can be extracted by Gaussian filtering. Gaussian
filtering is performed in the recursive method [13] to achieve
the pipelined operation. It is because in the recursive Gaussian
model, the filtering operation at a pixel requires only 4 adjacent
pixels in a row, that is, there is no data dependency between
rows, so that it can be parallelized in row level.
The Reflectance stage, as shown in Fig. 4, also has no data

dependency between pixels and can be parallelized in pixel
level. The Reflectance stage can be further divided into four
substages as shown in Fig. 5. The four substages are composed
of Logarithmic calculation, Restoration, Figure calculation, and
Range rescaling. First, reflectance of the image is calculated by
subtracting the illumination information from the given image.
Second, weights of three color channels (R, G, B) are decided.
Third, figures of the image such as average, variance, max-
imum, and minimum are calculated. Finally, the information
is used to rescale the resulting image for appropriate image
expression.
The number of processing elements in RGE and RE is de-

cided to balance their execution times to achieve the two-level
parallelism between Gaussian filtering and Reflectance. The
RGE has four processing elements for exploiting row level
parallelism of the recursive Gaussian method, and the RE has
ten processing elements to use pixel level parallelism of the Re-
flectance stage in MSR. The execution time of the Reflectance
stage is further reduced by performing the color restoration and
figure calculation in parallel. Combining all of the features, the
execution time of RGE and RE can be overlapped and pipelined
by reducing its processing time by 73% in total. Fig. 6 shows
the processing time reduction according to the pipelining of
stages.

B. Recursive Gaussian Engine

Fig. 7(a) compares the operations between the conventional
method and the recursive method [13]. In a conventional

Fig. 10. Feature extraction engine.

method, the radius of the Gaussian filter window is usually de-
termined by three times the scale parameter of the filter in most
cases. Considering the fact that MSR algorithm requires several
different types of scale values, different sizes of windows are
required, or for example, more than 300 kinds of scale param-
eters are required in QVGA-sized image. The undetermined
window size should be avoided in the pipelined operation be-
cause the execution time is unexpected; furthermore, it requires

multiplications and additions for one pixel calcula-
tion so that it is hard to manage the operation in a parallel way.
On the other hand, the recursive Gaussian method decomposes
Gaussian operation into causal and anticausal filters, which
consists of four multiplications along the adjacent pixel values.
It dramatically reduces the required memory bandwidth for one
pixel calculation because only four concurrent multiplications
and additions are required. However, it has an error because it
approximates the coefficient values, not the exact values of the
true Gaussian filter. In MSR, it is not a serious problem because
the algorithm requires only three relatively different Gaussian
filters regardless of whether each filter has an accurate Gaussian
filter kernel. Even so, we use an adaptive bit-resolution control
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Fig. 11. (a) SVKE. (b) Two parameters of the kernel operation in SVM. (c) Effectiveness of SVKE features.

for better filter operation. Fig. 7(b) shows the required bit res-
olution for maintaining the precision of the recursive Gaussian
method, and it supports three different types of fixed point
operation. In this work, 16-bit or 24-bit resolution operation
is selectively used according to the scale parameters of the
Gaussian filter. With the adaptive resolution, we can reduce
the power consumption by turning off the wide-bit processing
elements if it is unnecessary. As shown in Fig. 7(c), total power
reduction amounts to 54% compared with the conventional
implementation results estimated by the synthesis tools.

C. Mixed-Mode SG Using ANFIS

Fig. 8 shows that if the Retinex preprocessor chooses the
wrong scale parameter for the Gaussian filter, it fails the feature
extraction because of the resulted undesired clutters of MSR al-
gorithm. Since the clutters are closely dependent on the pixel in-
tensity variance of the image, the SG can be used to predict the
optimal scale parameter of the Gaussian filter using simple sta-
tistics such as intensity variance, peak count, and average. Fig. 9
shows the operation stages in SG which has neuro-fuzzy infer-
ence steps and hardware mapping. The SG consists of a mixed-
mode ANFIS [12] and a digital controller. By the mixed-mode
design, ANFIS takes advantages of low-power operation of the
current mode analog circuits resulting in reduce power reduc-
tion by 15%.
The mixed-mode ANFIS consists of five stages for neuro-

fuzzy inference: membership function calculation, fuzzy rule set

calculation, normalization, weight multiplication, and sum up.
Among these steps, the analog datapath of themembership func-
tion calculation is shown in Fig. 9, which performs nonlinear
conversion of the input to fuzzy values. The boundaries of fuzzy
values are controlled by and . The mixed-mode de-
sign of ANFIS was first presented in [14] and has been used
for its neuro-fuzzy inferences in several object recognition pro-
cessors [3], [15]. In RGE, the circuit is revised to support mul-
tidimensional operation with dimension controller. A detailed
explanation of the circuit operation can be found in [14]. The
digital controllers in the other parts perform parameter loading
and NoC communication. The variance of the pixel intensities
and the peak counts of a down-sampled image at each channel
are loaded in the controller, and they provide the clues on the op-
timal scale parameter for the given scene. In most cases, it is suf-
ficient to predict only the scale parameter since the neuro-fuzzy
logic finds the optimal scale values while performing learning
operation automatically.

IV. SVM PROCESSOR

A. Feature Extraction Engine (FEE)

Fig. 10 shows the detailed block diagram of the CE and
IE, which have the finite-state-machine logic and partially
programmable controller for their specific jobs – traffic sign
detection and description – and several special processing ele-
ments, which are border-to-distance calculation unit for traffic
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sign segmentation in CE and special ALU for SIFT-feature
description in IE. Since the traffic sign has only specific colors,
such as red and blue, and specific shapes in general, the CE uses
color information and distances from the border to a specific
color outer rim of the traffic signs. The integrated 8-bit ALU
in CE is capable of performing the segmentation in each color
channel with the CE.
After then, the segmented image results are stored in the

shared memory to provide them for IE. The IE performs the
feature description on the segmented part of the image. It has
a partially programmable controller with 4-kBytes instruction
memory, 16-bit extended ALU, and special ALU. In this work,
scale-invariant feature transform (SIFT) is adopted because it is
robust to noise as well as invariant to scale and rotation [8]. The
controller supports some special instructions, such as parallel
convolution, for SIFT descriptor generation. The CE adopts
8-bit ALU because it handles 8-bit resolution image, whereas
the IE adopts 16-bit ALU to meet the algorithm precision
requirement of SIFT description. Special functions for SIFT
description, such as SQRT, DIV, SIN/COS, and ARCTAN are
supported by the special ALU within three cycles.

B. Support Vector Kernel Engine

The generated feature vectors are then classified by SVM
classifier, which requires high computational cost due to its
complex kernel operation. Fig. 11(a) shows the detailed archi-
tecture of SVKE, which performs classification and learning
operations of SVM. In this study, we adopt the algorithm-op-
timized one-dimensional kernel cache in SVKE to reduce the
memory size requirement. It can store the pre-computed kernel
operation results to enable the complex kernel operation with
small memory at one cycle while performing SVM’s classi-
fication and learning functions. The key functions for SVM
classification and learning are shown, respectively, in

(4)

(5)

where is a coefficient, is a class value, is a feature
vector, and denotes kernel operation. In both cases, these
functions should be repetitively performed as many times as the
number of support vectors, which may be more than 1000 iter-
ations in most cases. Usually, real-time performance is difficult
because most of kernel operation have nonlinear functions re-
quiring special floating-point hardware. Most of SVM kernel in-
cludeGaussian radial basis function, or hyperbolic tangent func-
tions [7]. An LUT can resolve the problem because it simply
loads the precomputed results. However, it requires relatively
large memory for mobile system. For the kernel operation with
two 8-bit resolution parameters, 64-kBytes memory is required
for LUT. For this reason, many studies have implemented the
kernels in a limited linear function, 4-bit lower resolution, or
logarithmic number system [19]–[23]. However, as shown in (4)
and (5), one of the kernel parameters is constant during the iter-
ation. Fig. 11(b) shows the operations of the proposed scheme.

Fig. 12. SVSE.

The input parameters of kernel operation are the input vector
and support vectors. When performing the classification, the
input vector is constant while the kernel operation is repeated
for processing all of the support vectors. Thus, the one-dimen-
sional (1-D) kernel LUT cache fetches the kernel LUT results
corresponding to one parameter before performing the kernel
operation. It reduces the memory requirements without perfor-
mance degradation, comparing to the conventional case using
the two-dimensional (2-D) LUT. Fig. 11(c) shows the effective-
ness of the proposed 1-D kernel cache in comparison to the 2-D
kernel cache. Thanks to the reduced cache memory size, the av-
erage accessing power consumption is reduced by 78% while
maintaining the same throughput.

C. Support Vector Search Engine (SVSE)

Since SVM performs classification based on its support vec-
tors and BDT based multiclass SVM has many common sup-
port vectors between parent node and child nodes [9]–[11], it
is critical that the common vectors are shared to reduce its re-
quirement of large memory size. Fig. 12 shows the detailed ar-
chitecture of SVSE and its support vector data format in accor-
dance with its 160-bit datapath of processing elements. Each
support vector database consists of the header and attributes.
The header part of the database format indicates which SVM
has these vector attributes as its own support vector. A binary
expression is used, zero for no existence of support vector and
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Fig. 13. Top integration using NoC interface.

one for existence of support vector. The header part can in-
dicate up to 64 SVMs. When the controller requests the ac-
cess of support vector of a SVM, the header memory logic re-
turns the corresponding vectors by Boolean operation. In SVM’s
learning phase, the similarity check logic reduces the redun-
dancy in memory of duplicated vectors by comparing the differ-
ences of vector attributes. When the controller requests to store
the given vector as a support vector, the similarity check logic
searches the most similar vector in the database. If the differ-
ence of the two vectors exceeds the threshold value, the given
vector is stored in the database as the new entry. Otherwise, the
vector storage is replaced by updating of only the header part of
the most similar vector. In the similarity check logic, the input
vector is connected directly to the sum of absolute differences
(SAD) unit by a 160-bit datapath so that the vector comparison
can be performed without overhead.
As a result, it enables about 64 kByes of internal memory to

store more support vectors. In our applications for recognizing
20 traffic signs, 54% of support vectors are duplicated.With this
scheme, the total memory requirement can be reduced by 35%.

V. SYSTEM IMPLEMENTATION

A. NoC Interface for Two-Chip Integration

In this study, a NoC is adopted as a communication method
rather than bus, because it provides sufficient bandwidth to
each channel and has good scalability by the router switch. For
inter-chip communication between Retinex preprocessor and

SVM processor, the FIFO-based synchronization switch with
16-depth buffer is included in top switch for communication
stability. The NoC interface contains the configurable source
routing tables so that the entire routing path can be included in
the 38-bit header flit. The packet consists of three types: header,
address, and data flits. It supports up to 15 burst operation and,
finally, provides 640 MB/s of bandwidth in each direction.
Considering that the required bandwidth for Retinex and SVM
processors is about 55 MB/s at a QVGA-sized image, it fully
supports the full operation and is capable of processing up to
VGA-sized image. In this work, we develop the system using
a QVGA-sized video interface.
Fig. 13 shows the block diagram of NoC integration of two

chips. It uses a wormhole routing protocol that controls the
packet by smaller flow unit (flits) to reduce the input buffer
size. The two chips are connected on the board in a hierar-
chical star topology through the off-chip gateway path, as shown
in Fig. 13. Because the previous object recognition processors
[1]–[3] also have the same off-chip gateway path, it can com-
municate without any modification.

B. Implementation Results

The proposed traffic sign recognition system is fabricated in a
0.13- m CMOS technology. The Retinex preprocessor and the
SVM processor are implemented in separate ICs and integrated
together on an evaluation board through the same NoC protocol.
All blocks are implemented by a standard-cell automatic Place
and Routing stage except the SG, which is custom-designed
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Fig. 14. System photograph and summary.

Fig. 15. Block diagram of the evaluation system.

with mixed-mode ANFIS. Fig. 14 shows the chip photograph
and summarizes its specifications. The Retinex preprocessor
occupies 2.1 1.7 mm consuming 42 mW at a 1.2-V power
supply and the SVM processor occupies 2.2 3.2 mm con-
suming 50 mW at a 1.2-V power supply, respectively. The op-
erating frequency of the processor is 200 MHz for IP blocks and
400MHz for the NoC interface. The proposed system is capable
of performing the traffic sign recognition at QVGA-sized image
in 30 fps real time.

C. System Evaluation

The proposed chips are evaluated in a test platform, shown in
Fig. 15, using QVGA-sized video that was recorded in a harsh
environment at night with irregular illumination of headlight
from the front car. Video environment includes abrupt illumi-
nation change, under-exposure, and backlighting. The Retinex
preprocessor and SVM processor are connected by the off-chip
gateway interface in FPGA on the evaluation board. Full traffic
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TABLE I
TRAFFIC SIGN RECOGNITION APPLICATION COMPARISONS

TABLE II
SVM FUNCTION COMPARISONS

Fig. 16. Traffic sign recognition demonstration.

sign recognition is completed within 30 msec in total while the
previous work [16]–[18] required 130 ms, 85 ms or 433 ms
on PCs, and FPGAs, respectively. Table I shows the compar-
isons of the proposed system in traffic sign recognition appli-
cation. The proposed system can recognize traffic signs reliably
and robustly with the help of its illumination adaptation ability
while the others lack illumination adaptation. Table II shows
the comparison of SVM function capability with other works of
SVM processors [19]–[22]. The proposed SVM processor sup-
ports all the functions of kernel operation, on-chip learning, and
multi-class classification. The recognition accuracymeasured in
the test video sequences is approximately 90%, which is higher
than the 38% recognition accuracy of the previous works [1]–[3]
in the harsh illumination conditions of the test video, such as
backlighting and under-exposure cases. Thanks to the image en-
hancement of the Retinex preprocessor and high accuracy of
SVM processor, it successfully operates even with limited dy-
namic range mobile camera sensor as shown in Fig. 16.

VI. CONCLUSION

In this paper, we propose a robust traffic sign recognition
system for ADAS which can clearly recognize traffic signs even
under harsh environments. It is composed of two separate chips,
the Retinex preprocessor and the SVM processor. The proposed
system supports illumination adaptation capability under abrupt
illumination change by implementing MSR algorithm in the

Retinex preprocessor and guarantees high classification accu-
racy by the SVM algorithm in the SVM processor. The Retinex
preprocessor consists of RGE, RE, and mixed-mode SG. The
MSR operation is parallelized and pipelined into two stages,
resulting in 73% processing time reduction while the adopted
recursive method achieves 54% power reduction compared
with the conventional implementation. The mixed-mode SG
decides the parameters automatically by the learning operation
of ANFIS. The SVM processor consists of FEE, SVKE, and
SVSE blocks. The 1-D kernel cache in SVKE performs the
SVM functions with small memory, which achieves 78% ac-
cessing power reduction without performance degradation. The
SVSE proposed the new database structure for support vectors
and achieves 35% memory reduction in total.
The Retinex preprocessor and SVM processor are fabricated

in a 0.13- m CMOS process as separate ICs and integrated by
the NoC off-chip gateway interface. The NoC interface sup-
ports the connectivity between two chips. With a demonstration
system integrating two chips on an evaluation board, the pro-
posed system achieves 90% recognition rate for a QVGA-sized
video images taken in the harsh environment where the illumi-
nation condition is dynamically changing. It consumes 92 mW
at 1.2 V.
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