

1

Low Power MPEG-4 Video Codec Hardware for Portable Applications

Chi-Weon Yoon and Hoi-Jun Yoo

Semiconductor System Laboratory Department of Electrical Engineering Korea Advanced Institute of Science and Technology (KAIST)

Outline

- Introduction

• Motivations

Design of Low Power Motion Compensation (MC) Accelerator

- Low Power Design Techniques
- Implementation Results

- Design of Low Power Motion Estimator (ME)

- Low Power Design of Processing Element (PE)
- Simulation Results

- Conclusions

Portable Multimedia Applications

Various Portable Multimedia Applications

Video Codec

Contributions of This Work

- For Low Power Video Decoding
- For Low Power Video Encoding

Hardware Acceleration for MC

MCA + eDRAM Structure

Optimized Archictecture for Low Power Consumption

Low Power PE for Array-based ME Processor

Low Power Operation by Adaptive Bit resolution Reduction

Outline

Introduction

• Motivations

- Design of Motion Compensation (MC) Accelerator

- Low Power Design Techniques
- Implementation Results

Design of Low Power ME

- Low Power Design of Processing Element (PE)
- Simulation Results

- Conclusions

Motion Compensation(MC) Accelerator

Ref : (C.W.Yoon, ISSCC2001, JSSC2001)

7

Frame Buffer Structure

Memory Access Patterns

Distributed Nine-Tiled Block Mapping

: Low Power Technique (1)

Partial Activation Control Scheme

: Low Power Technique (2)

11

Power Savings

Power Reduction

Implementation Results

[Ref] C.W. Yoon et al, "A 80/20MHz ~", JSSC 2001

13

Outline

Introduction

• Motivations

- Design of Motion Compensation (MC) Accelerator

- Low Power Design Techniques
- Implementation Results

- Design of Low Power ME

- Low Power Design of Processing Element (PE)
- Simulation Results

- Conclusions

Concept of Adaptive Bit-Resolution Control Scheme

Bit Resolution Distribution

Full Search [-16, 15.5]

Constant Color & Small Movement

Miss America

Football

Circuit Implementation

Conventional PE

PE with ABRC

Trade-off (1) : Power

Trade-off (2) : Area

Power Savings

P. Savings for Various Algorithms

Method	Max	Min.
FS [-16, 15]	39%	15%
<u>BBGDS [-8,7]</u>	<u>41%</u>	<u>13%</u>
BBGDS[-16,15.5]	39%	10%

20

Conclusions

- Low Power MC Accelerator For Portable Applications
 - Optimized Architecture in terms of Low Power Consumption
 - Various Low Power techniques
- Low Power PE for Systolic Array-based ME
 - Adaptive Bit Resolution Control according to Operands
 - 10~40% Power Savings in Datapath
 - Without any sacrifice of Calculation accuracy
 - Comparison of Various PE structure
 - PE with 2b Granularity Control scheme shows the best performance
 - PE with 4b Granularity can be a good trade-off