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Abstract
An embedded 3D graphics rendering engine (E3GRE) is

implemented as a part of a mobile PDA-chip. 6Mb embedded
DRAM (eDRAM) macros attached to 8-pixel-parallel
rendering logic are logically localized with 3.2GByte/s run-
time reconfigurable bus, by which the area is reduced by
25%. Polygon-dependent access to eDRAM macros with
line-block mapping reduces the power consumption by 70%
with the read-modify-write data transaction. E3GRE with
2.22Mpolygons/s drawing speed was fabricated using
0.18µm CMOS embedded memory logic technology. Its area
and power consumption are 24mm2 and 120mW,
respectively.

1. Introduction
As the mobile electronics market grows, hand-held devices

such as palm-sized PC or Personal Digital Assistance (PDA)
are becoming popular and more processing power of these
devices is getting required because the market is moving
from text-based Personal Information Management (PIM) to
multimedia applications such as IMT-2000 terminals.
Recently, a multimedia PDA-chip, which contains a 32bit
RISC core, a MPEG-4 video decoder, and a 3D graphics
rendering engine with embedded-DRAM (eDRAM), was
presented [1]. In order to draw 3D primitives on an LCD
screen in the PDA-chip, the embedded 3D graphics rendering
engine (E3GRE) must be small in size and low in power
consumption while sustaining the high polygon drawing rate.
Local frame-buffer architectures [2, 3, 4] shown in fig. 1(a),
in which each local memory is tightly coupled with
corresponding pixel processor (PP), provides high
performance because required bandwidth for parallel
calculation of pixel data is obtained by local-route. Besides,
the power consumption is low because only necessary
memories can be selectively activated. In these architectures,
however, poor cell-efficiency of eDRAM increases the chip
area. Although a global frame-buffer architecture [5] shown
in fig. 1(b), in which required pixel data are obtained from
wide-bus of single eDRAM by bank-interleaving, is a good
candidate in terms of cell-efficiency, it wastes the power
because unnecessary data are transferred together with
required ones through long on-chip wires. In this paper, we
propose a logically local frame-buffer architecture with
eDRAM macros and run-time reconfigurable bus to achieve

low power, small area, and high polygon drawing rate.

Fig. 1 : Architecture Diagram of Embedded Frame-Buffer

2. Logically Local Frame-Buffer
Fig. 2 shows the block diagram of the E3GRE. One edge

processor (EP) calculates pixel data along edges of 8x8-
clipped polygon and broadcasts them to 8 pixel processors
(PP) which fill horizontal pixels inside polygon in parallel.
6Mb eDRAM macros, which form a ‘physically global’
frame-buffer, are attached to the rendering logic through the
run-time reconfigurable bus (R2bus). This global frame-
buffer reduces the area by enhancing the cell-efficiency of
eDRAM. The R2bus provides ‘logically local’ frame-buffers
[fig. 1(c)] to 8 PPs by changing both inter and intra bus
between eDRAM macros and rendering logic at every cycle
to get high drawing speed with low power consumption.

Fig. 2 : Block Diagram of Embedded 3D Graphics Rendering Engine
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3. Line-Block Memory Mapping
Fig. 3 shows the proposed line-block mapping. Each 8x1

screen pixels compose a line-block and adjacent line-blocks
are mapped into sub-wordlines of different eDRAM macro
units. Therefore, 4 macro units (A0, B0, A1, B1), each of
which contains one eDRAM macro for depth-buffer and two
eDRAM macros for double color-buffer, are necessary to
cover the screen area, and each line-block provides 8 pixel-
data (320bits) in parallel taking advantage of the wide-bus of
eDRAM.

Fig. 3 : Line-Block Memory Mapping

Fig. 4 : Simultaneous and Continuous Read-Modify-Write

Alternative memory mapping (A0,B0 and A1,B1) in the
vertical direction enables simultaneous and continuous read-
modify-write operation as described in fig. 4. At the first
logic cycle, the data for line V2 in fig. 4 are read from the
upper macro units (A0, B0). Then these data are
subsequently modified in the rendering logic and written
back to the same upper macro units at the second logic cycle.
At the same second cycle, the data for V3 are read from the
lower macro units (A1, B1). Therefore, rendering logic
continuously modifies the data by simultaneous memory
READ and WRITE operations.

4. Polygon-Dependent eDRAM Access
The power is wasted in a conventional global frame-buffer

[fig. 5] due to unnecessary data transaction. Therefore, we
use three low-power eDRAM access methods with line-block
activation to reduce the power consumption; Selective Macro
Activation (SMA), Partial Wordline Activation (PWA), and
Partial I/O Activation (PIA). As shown in fig. 3, 8x8-clipped
polygon falls into only left macro units (A0, A1), only right
macro units (B0, B1) [P2 in fig. 3], or both of them [P1, P3].
Moreover, as for a polygon which falls into both of them

such as P1, all vertical-lines do not require both macro units.
In fig. 6, a top line requires only left macro unit (A0) and two
bottom lines require only right macro unit (B0, B1).
Therefore, if only required macro units are selectively
activated by SMA, the power can be reduced. Simulation
result shows that more than 90% lines in polygons require
only one macro unit. And, only necessary sub-wordline for
line-block instead of full wordline is activated by PWA to
reduce the power of eDRAM core operation as shown in fig.
7. Lastly, PIA is used [fig. 8] to eliminate unnecessary I/O
bus transaction which consumes large power because of long
capacitive wires between eDRAM and logic.

Fig. 5 : Power Waste in Conventional Global Frame-Buffer

Fig. 6 : Selective Macro Activation

Fig. 7 : Partial Wordline Activation

Fig. 8 : Partial I/O Activation
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5. Implementation
Fig. 9 shows the circuit diagram of the proposed R2bus

which contains cascaded 2-to-2 MUXs and 16-to-8 bus-
shifters. The MUXs arbitrarily connect the bidirectional
eDRAM bus to the omnidirectional PP bus by changing
control signals (ctrl01, ctrlABread, ctrlABwrite). And the
bus-shifters assign pixel data to the corresponding PPs. This
bus provides 3.2GByte/s bandwidth by accessing 1280bits of
data simultaneously with read-modify-write pattern at
20MHz logic cycle. Besides, this R2bus can access eDRAM
macros with three different modes for (a) normal rendering,
(b) eDRAM test, and (c) eDRAM refresh as shown in fig. 10.

Fig. 10: Memory Access Modes of R2bus

Proposed E3GRE is integrated as the principal part of a
PDA-chip and fig. 11 shows the 3D rendering flow in the
chip [1]. After being pre-processed in an internal 32bit RISC

processor, 8x8-clipped polygon data, which are primitive
components of 3D objects, are fed into the E3GRE to be
displayed on an LCD screen. 3D rendering operations such
as Gouraud shading, alpha-blending for transparency, depth
comparison for hidden-surface removal, double-buffering for
flicker-free animation, and direct video transfer are
performed in E3GRE with fully utilizing the high bandwidth
of eDRAM frame-buffer. All E3GRE blocks are designed,
placed, and routed with full-custom method to optimally save
the area and the power. The chip is fabricated by 0.18µm
CMOS Embedded Memory Logic (EML) process with 3-
poly 6-metal layers. 1.5V power supply is used for rendering
logic, and 2.5V is applied to eDRAM macros. Fig. 12 shows
its die-photo and table 1 summarizes its features.
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6. Conclusion
An embedded 3D graphics rendering engine is designed to

be integrated into a mobile PDA-chip with 6Mb eDRAM
macros and 3.2GByte/s run-time reconfigurable bus. The
proposed R2bus supports logically local frame-buffer
architecture which reduces the area by 25% compared to the
conventional local frame-buffers due to its high cell-
efficiency. And polygon-dependent access to eDRAM
macros with line-block mapping eliminates the unnecessary
power consumption by 70% [fig. 13] while sustaining the
read-modify-write data transaction. The E3GRE, which
draws 2.22Mpolygons/s, was fabricated using 0.18µm
CMOS EML technology and it shows 24mm2 area and
120mW power consumption.
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Table 1 : E3GRE Features
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