A 210mW Graphics LSI implementing Full 3D Pipeline with 264Mtexels/s Texturing for Mobile Multimedia Applications

Ramchan Woo, S. Choi, J.H. Sohn, S.J. Song, Y.D. Bae, C.W. Yoon, B.G. Nam, J.H. Woo, S.E. Kim, I.C. Park, S. Shin1), K.D. Yoo1), J. Chung1), and H.J. Yoo

Semiconductor System Laboratory
Korea Advanced Institute of Science and Technology
1) Hynix Semiconductor Inc., Korea
Outline

- Introduction
- System Integration Overview
- Low Power IP Blocks
 - RISC, BEQ, 3DRE, DRAM, PPO
- Low Cost Process Technology
- Implementation Results
- Summary
Multimedia Processing on Hand

System Requirements
- Long Battery Lifetime
- Small Footprint
- Low Cost

Multimedia Applications
- Realtime Audio
- Realtime Video
- Realtime 3D Graphics

- 2D/3D Graphics LSI for Mobile Multimedia
 - Highest Level of Integration for Portable 3D
 - Low Power Techniques
 - Low Cost DRAM Process
Portable 3D Graphics

- Wireless Applications on Hands
 - 3D Avatar, 3D Games, Advertisements

- Functional Requirements
 - Texture Mapping + Special Rendering Effects
 - Gouraud Shading, Alpha Blending, Depth Comparison
Standouts of 3D Rendering Engine

<table>
<thead>
<tr>
<th></th>
<th>ISSCC2000</th>
<th>ISSCC2001</th>
<th>This Work</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generation</td>
<td>1st</td>
<td>2nd</td>
<td></td>
</tr>
<tr>
<td>Process Technology</td>
<td>0.35(\mu)m EML</td>
<td>0.18(\mu)m EML</td>
<td>0.16(\mu)m DRAM</td>
</tr>
<tr>
<td>Power Consumption of</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3D Rendering Engine</td>
<td>590mW</td>
<td>120mW</td>
<td>140mW (Texture)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>80mW (No Texture)</td>
</tr>
<tr>
<td>Pixel Fill Rate</td>
<td>40Mpixels/s</td>
<td>70Mpixels/s</td>
<td>66Mpixels/s</td>
</tr>
<tr>
<td>Texturing Performance</td>
<td>X</td>
<td>X</td>
<td>264Mtexels/s</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bilinear MIPMAP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Perspective Correct</td>
</tr>
<tr>
<td>Special Rendering</td>
<td>X</td>
<td>X</td>
<td>Programmable</td>
</tr>
<tr>
<td>Effects</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Size of Embedded</td>
<td>0.5Mbits (FB / ZB)</td>
<td>6Mbits (FB / ZB)</td>
<td>29Mbits (FB / ZB / TM)</td>
</tr>
<tr>
<td>DRAM</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Integration of Full 3D Pipeline

3D Pipeline
- Geometry Engine
 - T&L
- Vertex Buffer
 - Shading
- Rendering Engine
 - Texturing
- Rendering Memories
 - Frame/Depth
 - Textures

Operation
- Fast Calculation (>0.5M Vec/s)
- Programmability
- Efficient Data Xfer
- Parallel Calculation (>10M Pix/s)
- Huge Memory BW (>1GB/s)
- Large Capacity (>10Mb)
- Fast Cycle Time
- Many Access Ports
Architecture Overview

RISC
- 4kB I$
- 4kB D$
- ARM-9 Core

BEQ
- CTRL
- 1KB DP SRAM

3DRE
- SlimShader
 - TSE
 - PP #0
 - PP #1
 - TE #0
 - TE #1
 - AAL
- Memory Programmer
- Display Output
- 1.6GB/s @ 33MHz

External Interface

Clock Control Unit

PLL

PPO

DRAM
- 2Mb Depth Buffer
- 3Mb Frame Buffer
- 24Mb Texture Memory
Multimedia-Enhanced RISC

- **Enhancement with MAC**
 - 32x32 MAC in a single cycle
 - 3D Geometry Acceleration
 - 1.04Mvertices/s
 - 43% Improvement
 - Hand-Optimized S/W Library
 - MPEG-4 SP@L1 Decode

- **Memory Interface**
 - Direct path to BEQ
 - On-Chip SP-RAM Support
 - Non-Cacheable Addressing
Bandwidth Equalizer
: Low Power Technique (1)

- Partial Activation of DP-SRAM 20% Power Save
- Polygon Buffer / SP-RAM
3D Rendering Engine Architecture
: Low Power Technique (2)

TSE eliminates ~7000 RISC cycles

SlimShader

Address Alignment Logic (AAL)

Display Output

RISC

BEQ

3DRE

12 DRAMs reduce power consumption

MP

PP0

PP1

Texture Filter

Pixel Blending

Texture Addr.

Intpl. / Depth Comp.

Texture Filter

Pixel Blending

Texture Addr.

Intpl. / Depth Comp.

6Mb Texture Memory 0

6Mb TM1

6Mb TM2

6Mb TM3

512kb DB 0

DB1

DB2

DB3

768kb FB 0

FB1

FB2

FB3

Intpl. / Depth Comp.

Depth Comp.

Texture Addr.

6Mb
Depth First Clock Gating
: Low Power Technique (3)

□ DFCG prevents Unnecessary Transition
High Performance & Low Power Texturing

: Low Power Technique (4)

- **Address Calculation**
 - Perspective-Correct
 - Per-Pixel Dividers
 - Removes Artifacts

- **Texture Filtering**
 - Bilinear MIPMAP
 - Improves Pixel Quality

- **AAL**
 - Reduces the TM Requests
 - Simple Texture Cache

- **Embedded TMs**
 - Eliminates Off-chip loading
Address Alignment Logic
: Low Power Technique (5)

Number of Texture Requests
8 -> 2.5

☐ DFCG and AAL reduce 20% Power
Memory Programmer

: Low Power Technique (5) – Cont’d

- SIMD-parallel Datapath
- 16b Commands
- Commands Registers
3D-Optimized DRAM : FB / ZB
: Low Power Technique (6)

- Read-Modify-Write in a single Cycle < 20ns
- Partial Wordline Activation
Programmable Power Optimizer
: Low Power Technique (7)

- Fully software controllable
- Adjusting the frame rate during runtime
- Zero-latency frequency change
- PPO with PLL consumes less than 3mW
PPO Circuits and Measurement

: Low Power Technique (7) – Cont’d

Zero-Latency Frequency Scaling

GDFF eliminates glitch during frequency change

Measured Waveform
DRAM-based SoC Implementation

- Global Routing
- Resistive M0
- Std Cell Routing

- Low Cost
- Large On-Chip Memory with Little leakage current
- Logic, SRAM, Analog : Periphery Transistors
Die Photograph

- 0.16μm DRAM
 - 1-W 3-AL
- 11mm x 11mm
- 240pin I/O
- Power Supply
 - 2.0V : DRAM Core
 - 2.5V : Logic/Analog
 - 3.3V : I/O
- Power Consumption
 - Less than 210mW
- Transistors
 - 1M Logic
 - 29Mbits DRAM
 - 72kbits SRAM
System Power Consumption

Power (mW)

External Memory

No AAL, DFCG

3DCG with Texture

3DCG without Texture

MPEG4 Decoding

by Embedded DRAM

22% reduction with AAL, DFCG

210mW

145mW

85mW

3DRE and DRAM are Gated Off

FAST Mode

DB
FB
TM
3DRE
RISC
PPO
Rendering Performance Comparison

- **Pixel Rate**
 - MPxPS/mW = \(\frac{MPixels/Sec}{mW} \)
 - ISSCC 2000: 0.07
 - ISSCC 2001: 0.5
 - THIS WORK: 0.8
 - 1.4x increase

- **Texel Rate**
 - MTxPS/mW = \(\frac{MTexels/Sec}{mW} \)
 - ISSCC 2000: 0
 - ISSCC 2001: 0
 - THIS WORK: 1.88
 - No Texturing

- **Performance Index of Portable 3D**
 - JSSC Oct. 2002
 - Rendering Performance / Rendering Power
 - Analogous to MIPS/mW
System Evaluation Board
Summary

- Low Power 2D/3D Graphics LSI for Mobile Multimedia Applications

 (1) Highest Integration Level and Performance
 - Full 3D Pipeline: RISC + BEQ + 3DRE + DRAM + PPO
 - True-Color Pixels at 66Mpixels/s, 264Mtexels/s
 - Programmable Special Rendering Effects

 (2) Low Power Techniques
 - DFCG, AAL, PPO
 - Partial Activation: SRAM, DRAM

 (3) Low Cost Implementation
 - 0.16μm DRAM Process

- <210mW, 121mm²
 - Ready to be on your Hand