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Abstract 

A low-power 3D rendering engine with 2 texture 
units and 29Mb embedded DRAM is designed and 
integrated into an LSI for portable 3G multimedia 
terminals. Texture-mapped 3D graphics with 
perspective-correct address calculation and bilinear 
MIPMAP filtering can be realized while consuming the 
low power with the help of clock gating, precision-
controlled Look-Up Table dividers, texture address 
alignment and embedded DRAM. The performance is 
scalable and it reaches up to 100Mpixels/s and 
400Mtexles/s at 50MHz. The chip is implemented with 
0.16µm pure DRAM process to reduce the fabrication 
cost. The logic and DRAM consume 46mm2 and 140mW 
at 33MHz operation. The 3D graphics images are 
successfully demonstrated by the fabricated chip on the 
PDA system board. 
 
1. Introduction 

As the mobile electronics market matures, 3G 
multimedia terminals such as PDAs or smart cell-phones 
are getting popular. And their applications are already 
migrating to the realtime multimedia, even to the 3D 
gaming applications [4]. Therefore, much research about 
hardware-accelerators [1-3] and software-only solutions 
[4-5] has tried to put 3D graphics rendering into the 
handheld devices. However, they are still below the 
market requirements showing only limited shading 
operations, without the texture mapping that is 
mandatory for the 3D gaming applications. 

In order to draw texture-mapped 3D graphics on the 
mobile terminals, huge memory bandwidth and capacity 
must be provided to store the frame, depth and texture 
images. Therefore, Embedded Memory Logic (EML) 
process is one of the promising solutions since it 
integrates both DRAM and logic on a single die. 
However, this EML technology costs too much because 
the logic must be designed with the different transistors 
from the DRAM [1-3]. Therefore, it has not been widely 
used on the low-cost mobile platforms yet. 

In this work, we designed and implemented a 3D 
rendering engine using the pure DRAM technology to 
reduce the fabrication cost while keeping the huge 
memory bandwidth [6]. Using the DRAM process 
enables us to further reduce the power consumption 
because off-chip loading to the rendering memory is 
completely eliminated. We optimize the circuits and 
architectures so that the rendering engine with two 
texture units and 29Mb embedded DRAM are realized 
while satisfying the requirements of the battery lifetime 
and the physical dimensions of mobile terminals.  
 
2. System Architecture 

The system architecture of the proposed rendering 
engine is shown in Fig. 1. It consists of a main pixel 
pipeline, a post processing unit and a dozen of rendering 
DRAMs. The main pixel pipeline performs shading and 
texturing with two pixel processors, each of which 
contains a high-performance texture unit inside. 

After the pixel is being processed in the main 
pipeline, the post processing unit recalculates the pixel 
data for the realtime special effects such as antialiasing, 
motion blur, and fog [7]. The 29Mb rendering DRAMs 
contain frame buffers, depth buffers and texture 
memories. 12 independently-controlled DRAMs reduce 
the power consumption since the only necessary 
memories can be selectively activated.  

 

Figure 1 : Rendering Engine Architecture 
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3. Low Power Rendering Pipeline Structure 
Fig. 2 shows the main rendering pipeline and 

describes its operation. It is composed of 14 multi-
pipelined stages to maximally save the power 
consumption. After fetching the vertices and shaping the 
triangle, the rendering engine varies the operation cycles 
in the next stages according to the size (HOLD #1) and 
shape (HOLD #2) of the triangle by stopping the 
previous pipeline stages.  

 Figure 2 : Main Rendering Pipeline 

 
Also, the rendering engine suspends the following 

pipeline by gating off the clocks in each pixel processor 
according to the results of the depth-comparison in the PI 
stage. Therefore, we place the depth-compare-unit in the 
earlier pixel stage unlike the case in the high-
performance PC graphics chipsets. Since the rendering 
engine contains two pixel processor (PP) and each PP 
contains its own texture unit fetching 4 texels/cycle, the 
pixel fill rate and texel rate are 100Mpixels/s and 
400Mtexels/s at 50MHz, respectively.  

Even though setting up the triangle took more than 
7,000 cycles when it was calculated in the general 
purpose RISC processor, the previous work [1-3] didn’t 
contain the hard-wired setup engine because of its logic 
complexity. In this work, however, we simplify the setup 

algorithm and implement it inside the TS stage to 
enhance the overall 3D performance. 
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Figure 3 : Triangle Setup Engine 

 
 As shown in Fig. 3, it contains three 9-way SIMD 

SUBs, three 8-way SIMD DIV units and a midpoint-
interpolation unit. The total calculation time from the 
vertex register to the final MUX is less than 20ns and it 
decides the maximum operation frequency of the 
rendering engine – 50MHz. Because the insufficient 
precision in the fixed point datapath results in the severe 
artifacts in the drawing of large polygon, we 
implemented the 8-way SIMD divider by using 8 integer 
multipliers, 8 shifters and one precision-controlled Look-
Up Table (LUT) as shown in Fig. 4.  
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Figure 4 : 8-way SIMD Divider 

 
Because the reciprocal value of the divisor is always 

equal to or smaller than one, fixed point representation of 
the reciprocal in the fixed 8-bit LUT can result in too 
much loss of the precision. The larger the divisor is, the 
more leading zeros occur in the LUT. Therefore, all 
leading zeros can be eliminated so that only meaningful 
8-bit mantissa following after zeros and 3-bit 
corresponding fractional point locations are stored in the 
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LUT. To restore the fractional point, the results are right-
shifted at the last stage after being multiplied with the 
mantissa. This precision-controlled fixed-point LUT 
divider consumes lower power and smaller area 
compared with the standard IEEE-754 floating-point 
divider while delivering the required precision for the 
setup operation. 
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Figure 5 : (a) w format, (b) u, v format 
 
4. Texture Unit 

Even if the screen resolution of targeted PDA is 
limited, the rendering quality itself cannot be sacrificed. 
The rendering engine must calculate the pixels as correct 
as possible within the boundary of the required power 
consumption. Therefore, this rendering engine contains 
two texture units, each of which supports perspective-
correct address calculation and bilinear MIPMAP texture 
filtering. To perspective-correctly calculate the texture 
address, per-pixel division is required. This operation can 
be described as the following equation: 

U = u/w and V = v/w    ……….… [Eq. 1] 

1)V)U,(0(where, ≤≤      ………… [Eq. 2] 

vw,uw ≥≥∴            ………… [Eq. 3] 

Each operand (u, v, and w) has 16-bit precision in the 
datapath so that 16-bit / 16-bit divider is required to 
calculate the perspective-correct texture address (U and 
V). However, by the definition of the texture addresses 
as shown in Eq. 2, the range of w can be limited as in Eq. 
3. These facts can be used to reduce the power 
consumption and the area in the address calculation stage. 
The w can be represented in a binary form as in Fig. 5(a). 
The bits are composed of leading zeros, 8-bit data, and 
LSBs. We use only this 8-bit data component to search in 
the LUT since the leading zeros are meaningless. Even if 
trashing LSBs can cause 0.78% calculation error, it 
reduces the divisor bit-width from 16 to 8, resulting in 
more than 95% area reduction in the divider. Before 

being fed in the LUT divider, u and v are also 
reformatted to match w as in Fig. 5(b).  
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Figure 6 : Address Alignment Logic 
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Figure 7 : AAL Circuit 

 
The bilinear MIPMAP texture filtering is also 

implemented  to improve the pixel quality further. This 
filtering generates as many as 8 texture memory requests 
at every cycle. But, Address alignment Logic (AAL) [Fig. 
6] reduces these requests to 2.5 on an average working as 
a simple texture cache with Spatial Aligner and 
Temporal Aligner. By the definition of the MIPMAP 
selection, the texture footprints from two adjacent pixel 
processors are separated by approximately 1-texel 



distance. Therefore, some of the texels can be merged 
together in the Spatial Aligner [Fig. 7(a)]. The Temporal 
Aligner [Fig. 7(b)] functions the similar operations of the 
spatial aligner in the time domain. Unlike the 
conventional texture cache architecture, additional data 
register is not necessary for exploiting the temporal 
locality because previous texel data is already stored in 
the pipeline latch.  

 
5. Embedded DRAM Architecture 

To save the power consumption of the Embedded 
DRAMs as well as to optimally utilize their bandwidth, 
we designed three different DRAM types. As described 
in Table 1, the characteristics of each memory are 
optimized according to their operation requirements. To 
cover the 256 x 256 screen resolution which covers the 
screen resolution of most of current cell phones, 4 frame 
macros and 4 depth macros are used in the chip. Also, 4 
texture memory macros amount to 24Mb and store 
MIPMAP texture images for the 3D gaming applications. 
The Embedded DRAMs can provide 2.4GByte/s 
bandwidth which is sufficient for the 3D rendering at 
50MHz. 

 

Table 1 : Characteristics of Embedded DRAM Macro 
 Frame Buffer Depth Buffer Texture Memory

TRC 20ns 
Macro Size 768Kbit 512Kbit 6Mbit 

I/O Interface 24bit read 
24bit write 

16bit read 
16bit write 24bit I/O 

Commands 

Read-Modify-Write 
Read 
Write 

Auto Refresh 

Read 
Write 

Auto Refresh 

Latency 0 0 1 

 
6. Implementation 

The 3D rendering engine with embedded DRAM is 
integrated into the PDA-LSI which contains a 32bit 
RISC processor and power management unit as well [6]. 
It is fabricated using 0.16um 1-W 3-Al DRAM process 
to implement both the logic and memory into the single 
chip with low fabrication cost. Fig. 8(a) shows the die 
photograph and table 2 summarizes its features. It can 
draw 24bit texture-mapped pixels with the drawing speed 
of 100Mpixels/s and 400Mtexels/s at 50MHz, which is 
50 times faster than the minimum performance 
requirement of the PDA and cell-phones with 320x240-
resolution LCD. The first silicon is successfully working 

and realtime 3D graphics images are demonstrated on the 
system evaluation board as shown in Fig. 8 (b). 

 

Table 2 : Rendering Engine Features 
Process Technology 0.16um DRAM 1-W 3-Al 

Operation Frequency 5M ~ 50MHz (Scalable) 
Components 3D Rendering Engine 

29Mb DRAM 
Power Supply Rendering Logic : 2.5V 

Embedded DRAM :2.0V 
Power Consumption

with Embedded DRAM
140mW @ 33MHz (Texture Mapped)
80mW @ 33MHz (Shading Only) 

Rendering Performance 10M ~ 100Mpixels/s 
40M ~ 400Mtexels/s 

Total Area 46mm2 
 

Figure 8 : Die Photograph and System Evaluation Board 
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