
A Low Power 3D Rendering Engine with Two Texture Units and 29Mb
Embedded DRAM for 3G Multimedia Terminals

Ramchan Woo, Sungdae Choi, Ju-Ho Sohn, Seong-Jun Song, and Hoi-Jun Yoo

Semiconductor System Laboratory, Department of EECS

Korea Advanced Institute of Science and Technology, Daejeon, Korea
{ural@eeinfo.kaist.ac.kr, hjyoo@ee.kaist.ac.kr}

Abstract

A low-power 3D rendering engine with 2 texture
units and 29Mb embedded DRAM is designed and
integrated into an LSI for portable 3G multimedia
terminals. Texture-mapped 3D graphics with
perspective-correct address calculation and bilinear
MIPMAP filtering can be realized while consuming the
low power with the help of clock gating, precision-
controlled Look-Up Table dividers, texture address
alignment and embedded DRAM. The performance is
scalable and it reaches up to 100Mpixels/s and
400Mtexles/s at 50MHz. The chip is implemented with
0.16µm pure DRAM process to reduce the fabrication
cost. The logic and DRAM consume 46mm2 and 140mW
at 33MHz operation. The 3D graphics images are
successfully demonstrated by the fabricated chip on the
PDA system board.

1. Introduction

As the mobile electronics market matures, 3G
multimedia terminals such as PDAs or smart cell-phones
are getting popular. And their applications are already
migrating to the realtime multimedia, even to the 3D
gaming applications [4]. Therefore, much research about
hardware-accelerators [1-3] and software-only solutions
[4-5] has tried to put 3D graphics rendering into the
handheld devices. However, they are still below the
market requirements showing only limited shading
operations, without the texture mapping that is
mandatory for the 3D gaming applications.

In order to draw texture-mapped 3D graphics on the
mobile terminals, huge memory bandwidth and capacity
must be provided to store the frame, depth and texture
images. Therefore, Embedded Memory Logic (EML)
process is one of the promising solutions since it
integrates both DRAM and logic on a single die.
However, this EML technology costs too much because
the logic must be designed with the different transistors
from the DRAM [1-3]. Therefore, it has not been widely
used on the low-cost mobile platforms yet.

In this work, we designed and implemented a 3D
rendering engine using the pure DRAM technology to
reduce the fabrication cost while keeping the huge
memory bandwidth [6]. Using the DRAM process
enables us to further reduce the power consumption
because off-chip loading to the rendering memory is
completely eliminated. We optimize the circuits and
architectures so that the rendering engine with two
texture units and 29Mb embedded DRAM are realized
while satisfying the requirements of the battery lifetime
and the physical dimensions of mobile terminals.

2. System Architecture

The system architecture of the proposed rendering
engine is shown in Fig. 1. It consists of a main pixel
pipeline, a post processing unit and a dozen of rendering
DRAMs. The main pixel pipeline performs shading and
texturing with two pixel processors, each of which
contains a high-performance texture unit inside.

After the pixel is being processed in the main
pipeline, the post processing unit recalculates the pixel
data for the realtime special effects such as antialiasing,
motion blur, and fog [7]. The 29Mb rendering DRAMs
contain frame buffers, depth buffers and texture
memories. 12 independently-controlled DRAMs reduce
the power consumption since the only necessary
memories can be selectively activated.

Figure 1 : Rendering Engine Architecture

Triangle
Setup

Engine

Pixel Processor #0
Texture Unit #0

Pixel Processor #1
Texture Unit #1

Main Pixel Pipeline

Post Processing Unit

Vertex
Data

Texture Memory
(6Mb DRAM)

Texture Memory
(6Mb DRAM)

Texture Memory
(6Mb DRAM)

Texture Memory
(6Mb DRAM)

Fr
am

e
B

uf
fe

r
(7

68
K

b
D

R
A

M
)

Fr
am

e
B

uf
fe

r
(7

68
K

b
D

R
A

M
)

Fr
am

e
B

uf
fe

r
(7

68
K

b
D

R
A

M
)

Fr
am

e
B

uf
fe

r
(7

68
K

b
D

R
A

M
)

D
ep

th
 B

uf
fe

r
(5

12
K

b
D

R
A

M
)

D
ep

th
 B

uf
fe

r
(5

12
K

b
D

R
A

M
)

D
ep

th
 B

uf
fe

r
(5

12
K

b
D

R
A

M
)

D
ep

th
 B

uf
fe

r
(5

12
kb

 D
R

A
M

)

Rendered
Pixel

3. Low Power Rendering Pipeline Structure
Fig. 2 shows the main rendering pipeline and

describes its operation. It is composed of 14 multi-
pipelined stages to maximally save the power
consumption. After fetching the vertices and shaping the
triangle, the rendering engine varies the operation cycles
in the next stages according to the size (HOLD #1) and
shape (HOLD #2) of the triangle by stopping the
previous pipeline stages.

 Figure 2 : Main Rendering Pipeline

Also, the rendering engine suspends the following

pipeline by gating off the clocks in each pixel processor
according to the results of the depth-comparison in the PI
stage. Therefore, we place the depth-compare-unit in the
earlier pixel stage unlike the case in the high-
performance PC graphics chipsets. Since the rendering
engine contains two pixel processor (PP) and each PP
contains its own texture unit fetching 4 texels/cycle, the
pixel fill rate and texel rate are 100Mpixels/s and
400Mtexels/s at 50MHz, respectively.

Even though setting up the triangle took more than
7,000 cycles when it was calculated in the general
purpose RISC processor, the previous work [1-3] didn’t
contain the hard-wired setup engine because of its logic
complexity. In this work, however, we simplify the setup

algorithm and implement it inside the TS stage to
enhance the overall 3D performance.

Vertex
Register #0

Vertex
Register #1

Vertex
Register #2

Vertex SORT_T2B
(3 x 9 SIMD SUB)

Vertical Division
(3 x 8 SIMD DIV)

Vertex
MUX

Delta
MUX

Midpoint
Interpolation

Figure 3 : Triangle Setup Engine

 As shown in Fig. 3, it contains three 9-way SIMD

SUBs, three 8-way SIMD DIV units and a midpoint-
interpolation unit. The total calculation time from the
vertex register to the final MUX is less than 20ns and it
decides the maximum operation frequency of the
rendering engine – 50MHz. Because the insufficient
precision in the fixed point datapath results in the severe
artifacts in the drawing of large polygon, we
implemented the 8-way SIMD divider by using 8 integer
multipliers, 8 shifters and one precision-controlled Look-
Up Table (LUT) as shown in Fig. 4.

Precision
Controlled

LUT

dY

8b

MUL MUL MUL MUL MUL MUL

9b 17b 9b 9b 9b

MUL MUL

17b 17b 17b
dX dZ dR dG dB dU dV dW

8b

SHFT SHFT SHFT SHFT SHFT SHFT SHFT SHFT
3b

17b 17b 17b 17b25b 25b 25b 25b

17b 17b 17b 17b25b 25b 25b 25b

dX/dY dZ/dY dR/dY dG/dY dB/dY dU/dY dV/dY dW/dY

Figure 4 : 8-way SIMD Divider

Because the reciprocal value of the divisor is always

equal to or smaller than one, fixed point representation of
the reciprocal in the fixed 8-bit LUT can result in too
much loss of the precision. The larger the divisor is, the
more leading zeros occur in the LUT. Therefore, all
leading zeros can be eliminated so that only meaningful
8-bit mantissa following after zeros and 3-bit
corresponding fractional point locations are stored in the

IF ID1 ID2 TS EP HS
PI

PI

TA1

TA1

TA2

TA2

TP1

TP1

TP2

TP2

TP3

TP3

TF

TF

PB

PB

PP#0

Rendering
Clock

PP#1HOLD #2

HOLD #1

Pipe Description

IF Instruction Fetch, Main Power Control
ID1 Instruction Decode #1
ID2 Instruction Decode #2, Triangle Shaping
TS Triangle Setup
EP Edge Processor
HS Horizontal Setup, Span Generation
PI Pixel Interpolation, Depth-Comparison,

Depth-Buffer Interface, Clock Gating Control
TA1 Texture Address #1, LOD calculation,

1/w dividision
TA2 Texture Address #2, Address Merging
TP1 Texture Prefetch #1, Bank Address Aggregation

Texture Memory Command Generation
TP2 Texture Prefetch #2, Texture Memory Read
TP3 Texture Prefetch #3, Texture Data Alignment,

Reverse Prodecure of Address Alignment
TF Texture Filter
PB Pixel Blending

LUT. To restore the fractional point, the results are right-
shifted at the last stage after being multiplied with the
mantissa. This precision-controlled fixed-point LUT
divider consumes lower power and smaller area
compared with the standard IEEE-754 floating-point
divider while delivering the required precision for the
setup operation.

Leading
Zeros 8-bit Data LSB

Leading
Zeros 8-bit Data LSB Zero

Padding

(a) w format
Meaningless Approximation Errorto 8-bit LUT

(b) u, v format

16-bit u, v before reformatting
16-bit u, v after reformattingShift corresponding to

Leading Zeros in w

Figure 5 : (a) w format, (b) u, v format

4. Texture Unit

Even if the screen resolution of targeted PDA is
limited, the rendering quality itself cannot be sacrificed.
The rendering engine must calculate the pixels as correct
as possible within the boundary of the required power
consumption. Therefore, this rendering engine contains
two texture units, each of which supports perspective-
correct address calculation and bilinear MIPMAP texture
filtering. To perspective-correctly calculate the texture
address, per-pixel division is required. This operation can
be described as the following equation:

U = u/w and V = v/w ……….… [Eq. 1]

1)V)U,(0(where, ≤≤ ………… [Eq. 2]

vw,uw ≥≥∴ ………… [Eq. 3]

Each operand (u, v, and w) has 16-bit precision in the
datapath so that 16-bit / 16-bit divider is required to
calculate the perspective-correct texture address (U and
V). However, by the definition of the texture addresses
as shown in Eq. 2, the range of w can be limited as in Eq.
3. These facts can be used to reduce the power
consumption and the area in the address calculation stage.
The w can be represented in a binary form as in Fig. 5(a).
The bits are composed of leading zeros, 8-bit data, and
LSBs. We use only this 8-bit data component to search in
the LUT since the leading zeros are meaningless. Even if
trashing LSBs can cause 0.78% calculation error, it
reduces the divisor bit-width from 16 to 8, resulting in
more than 95% area reduction in the divider. Before

being fed in the LUT divider, u and v are also
reformatted to match w as in Fig. 5(b).

 MASK
 Generation

PP0 PP1

Bilinear Address
Generation

Bilinear Address
Generation

Spatial Aligner

Temporal Aligner

Physical Address Translation

LOD
Unit

SPMASK_0[3:0]
SPMASK_1[3:0]
SPMASK_2[3:0]
SPMASK_3[3:0]

TA_PP1

TMMASK_0[7:0]
TMMASK_1[7:0]
TMMASK_2[7:0]
TMMASK_3[7:0]
TMMASK_4[7:0]
TMMASK_5[7:0]
TMMASK_6[7:0]
TMMASK_7[7:0]

Physical
Texture Addresses

TM
A

0[
19

:0
]

TM
A

1[
19

:0
]

TM
A

2[
19

:0
]

TM
A

3[
19

:0
]

TM
A

4[
19

:0
]

TM
A

5[
19

:0
]

TM
A

6[
19

:0
]

TM
A

7[
19

:0
]

TA_PP0

PP
0_

0

PP
0_

1

PP
0_

2

PP
0_

3

PP
1_

0

PP
1_

1

PP
1_

2

PP
1_

3

SP
M

A
SK

[7
:0

]

PP
0_

0

PP
0_

1

PP
0_

2

PP
0_

3

PP
1_

0

PP
1_

1

PP
1_

2

PP
1_

3

PP
0_

0

PP
0_

1

PP
0_

2

PP
0_

3

PP
1_

0

PP
1_

1

PP
1_

2

PP
1_

3

LOD

TM
M

A
SK

[7
:0

]

Figure 6 : Address Alignment Logic

=?

=?

=?

=?

=?

=?

=?

=?

=?

=?

=?

=?

=?

=?

=?

=?

PP1_0
[15:0]

PP1_0
[15:0]

PP1_0
[15:0]

PP1_0
[15:0]

SPMASK_0
[3:0]

SPMASK_1
[3:0]

SPMASK_2
[3:0]

SPMASK_3
[3:0]

=?

=?

=?

=?

=?

=?

=?

=?

TMMASK_
0[7:0]

=?

=?

=?

=?

=?

=?

=?

=?

=?

=?

=?

=?

=?

=?

=?

=?

=?

=?

=?

=?

=?

=?

=?

=?

=?

=?

=?

=?

=?

=?

=?

=?

=?

=?

=?

=?

=?

=?

=?

=?

=?

=?

=?

=?

=?

=?

=?

=?

=?

=?

=?

=?

=?

=?

=?

=?

PP0_0
[15:0]

PP0_1
[15:0]

PP0_2
[15:0]

PP0_3
[15:0]

PP1_0
[15:0]

PP1_1
[15:0]

PP1_2
[15:0]

PP1_3
[15:0]

=?

LOD

TEX
clk

Bitwise AND Bitwise AND Bitwise AND Bitwise AND Bitwise AND Bitwise AND Bitwise AND Bitwise AND

TMMASK_
1[7:0]

TMMASK_
2[7:0]

TMMASK_
3[7:0]

TMMASK_
4[7:0]

TMMASK_
5[7:0]

TMMASK_
6[7:0]

TMMASK_
7[7:0]

(a) Spatial Aligner

(b) Temporal Aligner

TEXclk

SPMASK[7]

SPMASK[6]

SPMASK[5]

SPMASK[4]

SPMASK[3]

SPMASK[2]

SPMASK[1]

SPMASK[0]

PP0_0 [15:0]

PP0_1 [15:0]

PP0_2 [15:0]

PP0_3 [15:0]

Figure 7 : AAL Circuit

The bilinear MIPMAP texture filtering is also

implemented to improve the pixel quality further. This
filtering generates as many as 8 texture memory requests
at every cycle. But, Address alignment Logic (AAL) [Fig.
6] reduces these requests to 2.5 on an average working as
a simple texture cache with Spatial Aligner and
Temporal Aligner. By the definition of the MIPMAP
selection, the texture footprints from two adjacent pixel
processors are separated by approximately 1-texel

distance. Therefore, some of the texels can be merged
together in the Spatial Aligner [Fig. 7(a)]. The Temporal
Aligner [Fig. 7(b)] functions the similar operations of the
spatial aligner in the time domain. Unlike the
conventional texture cache architecture, additional data
register is not necessary for exploiting the temporal
locality because previous texel data is already stored in
the pipeline latch.

5. Embedded DRAM Architecture

To save the power consumption of the Embedded
DRAMs as well as to optimally utilize their bandwidth,
we designed three different DRAM types. As described
in Table 1, the characteristics of each memory are
optimized according to their operation requirements. To
cover the 256 x 256 screen resolution which covers the
screen resolution of most of current cell phones, 4 frame
macros and 4 depth macros are used in the chip. Also, 4
texture memory macros amount to 24Mb and store
MIPMAP texture images for the 3D gaming applications.
The Embedded DRAMs can provide 2.4GByte/s
bandwidth which is sufficient for the 3D rendering at
50MHz.

Table 1 : Characteristics of Embedded DRAM Macro
 Frame Buffer Depth Buffer Texture Memory

TRC 20ns
Macro Size 768Kbit 512Kbit 6Mbit

I/O Interface 24bit read
24bit write

16bit read
16bit write 24bit I/O

Commands

Read-Modify-Write
Read
Write

Auto Refresh

Read
Write

Auto Refresh

Latency 0 0 1

6. Implementation

The 3D rendering engine with embedded DRAM is
integrated into the PDA-LSI which contains a 32bit
RISC processor and power management unit as well [6].
It is fabricated using 0.16um 1-W 3-Al DRAM process
to implement both the logic and memory into the single
chip with low fabrication cost. Fig. 8(a) shows the die
photograph and table 2 summarizes its features. It can
draw 24bit texture-mapped pixels with the drawing speed
of 100Mpixels/s and 400Mtexels/s at 50MHz, which is
50 times faster than the minimum performance
requirement of the PDA and cell-phones with 320x240-
resolution LCD. The first silicon is successfully working

and realtime 3D graphics images are demonstrated on the
system evaluation board as shown in Fig. 8 (b).

Table 2 : Rendering Engine Features
Process Technology 0.16um DRAM 1-W 3-Al

Operation Frequency 5M ~ 50MHz (Scalable)
Components 3D Rendering Engine

29Mb DRAM
Power Supply Rendering Logic : 2.5V

Embedded DRAM :2.0V
Power Consumption

with Embedded DRAM
140mW @ 33MHz (Texture Mapped)
80mW @ 33MHz (Shading Only)

Rendering Performance 10M ~ 100Mpixels/s
40M ~ 400Mtexels/s

Total Area 46mm2

Figure 8 : Die Photograph and System Evaluation Board

References
 [1] Ramchan Woo, et al., “A 120mW 3D Rendering Engine with

6Mb Embedded DRAM and 3.2Gbyte/s Runtime Reconfigurable

Bus for PDA-Chip,” JSSC, pp. 1352-1355, Oct. 2002

[2] Chi-Weon Yoon, et al., “An 80/20MHz 160mW Multimedia

Processor Integrated With Embedded DRAM, MPEG-4

Accelerator, and 3D Rendering Engine for Mobile Applications,”

ISSCC, pp. 142-143, 2001

[3] Yong-Ha Park, et al., “A 7.1GB/s Low-Power 3D Rendering

Engine in 2D Array-Embedded Memory Logic CMOS,” ISSCC,

pp. 242-243, 2000

[4] Khronos Group, “Brining 3D Gaming to Cell Phones,” Game

Developers Conference 2003.

[5] Gopi K Kolli, “3D Graphics Optimizations for ARM

Architecture,” Game Developers Conference 2002.

[6] Ramchan Woo, et al, “A 210mW Graphics LSI Implementing

Ful 3D Pipeline with 264Mtexels/s Texturing for Mobile

Multimedia Applications”, ISSCC pp 44-45, 2003

[7] Tomas Akenine-Moller, et al, “Real-Time Rendering”, 2nd Ed.,

A K Peters, 2002.

3D Graphics image

