480ps 64-bit Race Logic Adder

Se-Joong Lee*, Ramchan Woo, and Hoi-Jun Yoo

Semiconductor System Laboratory
Department of Electrical Engineering
Korea Advanced Institute of Science and Technology (KAIST)
Outline

- Introduction
- Overall Architecture
- Fast Carry Generation for 64-bit Adder
- Simulation Results
- Conclusion
Introduction

Why Race Logic?

- Boolean Function
- Sum of Product, Product of Sum
 - Sum
 - Product
 - Race Logic
 - Wired-OR
 - Wave Pipelining
Introduction

Race Logic Architecture

Se-Joong Lee et al., IEEE ESSCIRC, 2000
Introduction

Test Chip Fabrication

- 64-bit CLA using Race Logic
- 0.25μm CMOS technology
- 6-metal (1W, 5Al)
- Clk – S31 : 0.9ns

Die Photo

Measured Waveform
Introduction

How Race Logic Works?
Introduction

A \cdot B operation
Introduction

A + B operation
64-bit Adder with Race Logic

8-bit CLA g/k 8-bit CLA g/k 8-bit CLA g/k 8-bit CLA
8-bit CLA G^g/G^k 8-bit CLA G^g/G^k 8-bit CLA G^g/G^k 8-bit CLA
8-bit CLA G^g/G^k 8-bit CLA G^g/G^k 8-bit CLA G^g/G^k 8-bit CLA

G^g/G^k

MUX c_55 MUX c_47 MUX c_7
S<56:63> S<48:55> S<8:15> S<0:7>

Race Logic
Carry Generation Circuit

2-Level Gg/Gk Architecture

- Pre-process
- Level-1
- Level-2
Level-1 Group ‘g’ and ‘k’

Boolean Function

\[G^1g = g_7 + \overline{k_7} \{ g_6 + \overline{k_6} \{ \ldots \{ g_1 + \overline{k_1} g_0 \} \} \} \]

\[G^1k = k_7 + g_7 \{ k_6 + g_6 \{ \ldots \{ k_1 + g_1 k_0 \} \} \} \]

\[g = A \cdot B \]

\[k = \overline{A+B} \]
Level-1 Group ‘g’ and ‘k’

Schematic
Level-1 Group ‘g’ and ‘k’

Winner-Take-All Circuit

"Winner Passes"

"Loser Blocked"

Stay High

Turned off
Level-1 Group ‘g’ and ‘k’

Simulation Results

- 0.18μm CMOS param.
- Vdd = 1.62 V
- OUT follows G-line
- OUT stays High
- Delay time of WTAC = 15psec
Level-2 Group ‘g’ and ‘k’

Generates Every Carry Simultaneously
Level-2 Group ‘g’ and ‘k’
Level-2 Group ‘g’ and ‘k’

Simulation Results

(a) The worst Case
(Only g_0 is ‘1’)

(b) The best Case
(All of g_i are ‘1’)

clk
C7~C55

clk
C7~C55
Simulation Results

- 0.18\(\mu\)m CMOS model parameter
- \(V_{dd} = 1.62\) V
- \(T = 85\) \(^0\)C
- \(Clk-S63 = 480\) ps
Simulation Results

Delay Time Analysis

203ps

57+185+218=460ps

480ps
Layout View

- g/k
- G^1g/G^1k
- G^2g/G^2k
- 8-bit CLAs
- MUX
- Clock Generator

Dimensions:
- 20% of total area
- 180μm
- 490μm
Conclusion

- 480ps 64-bit Race Logic Adder is designed by 0.18\(\mu\)m CMOS technology

- For Race Logic Adder, 2-Level Group generate and kill scheme is suggested

- Race Logic is successfully employed to design high-speed carry generation circuit