One chip Low power Digital- TCXO with Sub- ppm Accuracy

Se-Joong Lee, Jin-Ho Han, Seung-Ho Han*, Joo-Ho Lee, Jung-Su Kim, Min-Kyu Je and Hoi-Jun Yoo

Department of EECS in KAIST

*ShinSung Electronics co. , LTD
Outline

• Motivation
• Basics of a DTCXO
• Conventional DTCXO
• Proposed DTCXO
  – Concept
  – Overall Configuration
  – Structure of the Capacitor Bank
  – Operation of the Controller
• Experimental Results
• Summary
Motivation

• Need for extremely accurate frequency
  – Clock for digital system
  – Reference frequency generator for communication system
• Limitation of a Crystal Oscillator
  – Problem of frequency fluctuation due to temperature variation
• Low power
  – To satisfy the demands of handheld devices
Basics of a DTCXO

- The only way to tune the oscillation frequency is by varying $C_L$.

One of the widely known oscillator structures

$$C_L = \frac{C_1 C_2}{C_1 + C_2}$$
Conventional DTCXO

- Memory + Varactor Diode
  - Varactor Diode is hard to implement into VLSI chip
Conventional DTCXO

- Memory + Capacitor Bank
  - Resolution of compensation is restricted by Memory size

```
```

- Calculator + Capacitor Bank
  - Accuracy of compensation is doubtful

```
```
Concept of the proposed DTCXO

- **EEPROM + Controller + Capacitor Bank**
  - Exact value of compensation capacitor is stored in EEPROM (1°C Resolution)
  - Using ALU in the controller, the compensation resolution is doubled (0.5°C Resolution)
Overall System Configuration

OSCILLATOR
- FREQ. SEL BANK
- TEMP. COMP BANK1
- TEMP. COMP BANK2
- VOL. CTRL BANK

CAPACITOR BANK

CONTROLLER
- INTERPRETER
- REGISTER
- SEQUENCER
- ADC
- PTAT SENSOR

TEMP. SENSOR

MEMORY
- ADDR. LATCH
- DATA LATCH
- OUTPUT DATA LATCH
- MEMORY CELL CORE
Overall System Configuration

• Temperature Sensor
  – 0.5°C resolution
  – -55°C ~ 120°C (Frequency variation of Crystal Oscillator mainly occurs from -40°C to 85°C)

• EEPROM
  – Compensation data (1Kbit) and Stores program code (64bit)
Capacitor Bank

Schematic of Unit cell

Temperature Compensation Bank

16 cells

UNIT CELL

decoder
Capacitor Bank

• Physical structure of the Capacitor Bank
  – Poly- Oxide- Poly capacitor

• Determining the Unit Cell capacitance
  – Maximum $\Delta f$ is $\pm 30$ppm
  – The value of unit capacitor is chosen to be $36\text{fF}$
    to compensate with $0.2$ppm accuracy,
Operation of the Controller

- Task flow diagram of the Controller
  - Calibration Mode
  - Programming Mode
  - Memory Test Mode
  - Operation Mode
Operation of the Controller

• Capacitor Bank Selection
  - Region I: Frequency changes rapidly
  - Region II: Frequency changes slowly
Experimental Results

- Trimming characteristics of proposed DTCXO
- 0.2ppm resolution is obtained.
Experimental Results

- Oscillator output spectrum showing the harmonic characteristics.
Features

- **Technology**
  - 0.5um CMOS process
  - 2 poly and 3 metal

- **Chip size**
  - 2.8x3.2mm²

- **Power consumption**
  - 6.6mW

- **Accuracy**
  - 0.2ppm
Summary

• To obtain high accuracy and fine resolution temperature compensation, EEPROM and Controller is integrated.

• To reduce power consumption, every components which includes temperature sensor, ADC, EEPROM, controller and oscillator are fabricated into one chip.

• Experimental results show the frequency compensation is successfully performed with 0.2ppm trimming accuracy.