
 A Distributed Crossbar Switch Scheduler for On-Chip Networks

Kangmin Lee, Se-Joong Lee, and Hoi-Jun Yoo
Semiconductor System Laboratory, Dept. of Electrical Engineering, KAIST, Daejeon, Korea

kangmin@mail.kaist.ac.kr

Abstract
A scheduling algorithm is proposed for lightweight on-chip

crossbar switch in on-chip networks. The proposed NA-MOO
algorithm distributes the arbitration computing over all of the
crossbar fabric nodes. Its implementation shows that it can
reduce > 60% area and > 20% computation delay compared to
conventional round robin based SLIP algorithm. Its feasibility
is analyzed by using a SoC for HDTV as an example. The
proposed techniques are area-efficient and show higher
performance for the on-chip interconnection networks.

1. INTRODUCTION
System-on-chip (SoC) provides integrated solutions to

challenging design problems in telecommunications,
multimedia, and consumer electronics domains. One of the
bottlenecks for achieving the operational goal of SoCs is the on-
chip physical interconnection that will present a limiting factor
for performance and, possibly, energy consumption [1].
Recently, a general-purpose on-chip interconnection network
became of interest as a replacement for design-specific global
on-chip wiring [1-2]. Using a network, which exploits the
methods and tools used for general computer networks, is
known to achieve efficient communication on SoCs [1]. An
essential component of SoC networks and the computer
networks is a switch fabric circuit, by which all network traffic
is routed from ingress ports to egress ports. In particular, a
nonblocking crossbar switch is widely used for a high-speed
switching since it is free of interconnect contention and needs
less buffer bandwidth. While most attention is focused on speed
and capacity issues of switch fabrics in legacy computer
networks, the silicon area of the switch fabric, including the
crossbar core, input/output buffers and a crossbar scheduler, is
becoming of a concern for SoC networks [2].

The success of on-chip network architecture depends on the
ability to keep the overall area overhead to its minimum. The
major components of a crossbar switch are in/out buffers, a
crossbar core and an on-chip scheduler.
To reduce the area of a switch fabric core the link serialization
is efficient [2]. This 4:1 serialization reduces the size of the
switch core to 1/16, but the size of in/out buffers and a
scheduler remain unchanged.

The area of the on-chip switch is heavily dominated by the
space occupied by the on-chip buffers. This space limitation of
the on-chip buffer comes in deep contrast with real data
networks where there is ample room for very large buffers.
Under these circumstances, the virtual output queueing (VOQ)
scheme for alleviating head of line (HOL) blocking is difficult
to be adopted since the VOQ needs non-shared independent
input buffers of N2. Moreover, VOQ is not so efficient because
the traffic patterns of SoC networks are not as random as traffic
patterns of data networks. To make matters worse, adopting
VOQ increases the crossbar scheduler complexity twofold [4].
For SoC networks with a star topology, HOL blocking is very
rare because a switch port is dedicated to a computing node. As
a result, VOQ is inappropriate for on-chip networks so that we
assume the input buffer as FIFO queueing not VOQ.

In this paper, we propose a method to reduce the area of
OCN: a NA-MOO algorithm for the reduction of the area of an
on-chip scheduler. By using this method we reduce the area of
the scheduler by 60%. In addition, the speed of the scheduler is
20% faster than that of a conventional scheduler.

This paper is organized as follows: in section 2 the
conventional crossbar's scheduler circuits are explained; in
section 3 we propose a new crossbar scheduling algorithm
which is compared with a conventional round robin algorithm
from a viewpoint of an area, a computing speed and a switching
performance especially for HDTV applications in section 4.
Finally conclusion will be made in section 5.

2. BACKGROUND
A block diagram of a general crossbar scheduler with FIFO

queueing is shown in figure 2.1. It consists of three blocks:
input FIFO buffer, arbiters for each output port and a crossbar
fabric core. Each input buffer generates a request to a destined
output port’s arbiter. Each arbiter selects a request among input
ports to use the output link. The arbiter then generates proper
control signals for the crossbar core to set up a path from the
granted input port and gives a grant signal to the granted input
port. The granted input queue transfers the packet through the
crossbar core.
2.1. Crossbar Scheduler

An intelligent centralized scheduler is needed to guarantee
the fairness among input ports and to use the switch fabric
efficiently in the network switches and routers. Most crossbar

schedulers are based on a round robin [4]. (See figure 1.) The
round robin has a rotating priority denoted by P. The round
robin arbiter guarantees that none of the input ports are starved,
and that all are treated fairly. However, hardware for the round-
robin arbiter is too complicated to integrate within a SoC [4].

State-of-the-art implementation of a round robin is shown
in figure 2. A round-robin arbiter consists of a programmable
priority encoder (PPE), registers to memorize the priority
pointer, an incrementer and a binary encoder. The PPE consists
of two simple priority encoders (smpl_PE), a thermal encoder
and bitwise AND/OR gates. The fastest and smallest smpl_PE
that use a multi-level look-ahead and folding scheme was
proposed in [5]. The centralized priority pointer makes the
round-robin scheduler complicated.

Pi

GrantPi+1

Search

Arb Arb Arb

R
eq

ue
st

s

grants

IQ
IQ
IQ

IQ

Grant Arbiters
Request
Port # 1

1
2
3

45
6
7

8
0

0

1

0

0

1

1

Round-Robin ArbiterCrossbar core

Figure 1. Crossbar switch with FIFO Queueing and
round-robin arbiters [4]

Therefore, we propose a new crossbar-scheduling algorithm
called NA-MOO, which uses neither a centralized priority nor
the area-consuming round-robin arbiter. Furthermore, since the
NA-MOO scheduler can be implanted into a crossbar fabric
core, the wiring area between the scheduler and the crossbar
core can be removed. A description and a performance analysis
are presented in detail in section 3.

Req Grant
n n

CLK

INC 1
E
N
C

en

PPElgn

lgn

(2) updating path

anyGrant

P_
en

c

Programmable
Priority Encoder

Req n

P_enc
lgn n

t
h

simple PE

anyGrant

anyGrant

n

n
simple PE

Grantn

thermo enc

Critical
Path

(1) computing path

[25]

Figure 2. Implementation of a round-robin arbiter [4-5]

3. Proposed NA-MOO algorithm
3.1 Description of the NA-MOO algorithm
The proposed NA-MOO algorithm's scheduler embedded in
crossbar core is shown in figure 3. This is mixture of the
crossbar scheduler and Mux-Tree-based crossbar fabric core for
an output port.

1

2

0

3

4

1

5

6

0

7

8

0

1

1

1

Req.
No Req.
Crossbar core

n NA-MOO
Scheduler Macro

n: Preference value
 that control MUX

1st stage 2nd 3rd

(1)

(2)

(3)

(4)

(5)

(6)

(7)

Node #

In
pu

t P
or

ts

O
utput Port

Granted
Path

Figure 3. Proposed NA-MOO algorithm scheduler mixed
with crossbar core

The arbitration computing is centralized and the priority
rotates in a fixed round-robin fashion at round robin based SLIP
algorithm [4]. On the contrary, at NA-MOO algorithm, the
computing is distributed over crossbar core nodes and the
priority is determined by each node's state. We call the state
preference value. Due to the distributed computing rather than

centralized computing, the NA-MOO scheduler complexity is
reduced.

Each node from (1) to (7) in figure 3 has a 1-bit preference
value in its NA-MOO scheduler macro by which each node’s
multiplexer selects an input to be transfer through the node.
Actually the preference value is referred only when both inputs
bring requests i.e. output conflict. (See figure 4)

By a propagation of (a request, packet data) through the
multiplexer at each stage, only one packet data reaches the
output port as shown as a dot line in figure 3. This is the so-
called crossbar arbitration.

Don't care

(b) one request (c) two requests

A

B

x

(a) no request

A

B
A

X 0 A

B

1

B

Move to Referred

request
no request

No Request
Propagation

Figure 4. Operation at a node case-by-case

After a packet is transferred through a granted path from the
granted input port to the output port, the preference values are
toggled along the granted path to give the granted input port the
lowest priority. This updating mechanism is similar to SLIP
algorithm, which leads to a desynchronization of the output
arbiters [4]. For example, in figure 3, if input #7 is granted; the
preference values of (4), (6) and (7) nodes are toggled while
other multiplexers don’t change their preference values. Then,
the path from the input #7 to the output is totally blocked
because each node prefers the opposite path by altering
preference values. Therefore, the input port #7 gets the lowest
priority after granted.

The most distinctive feature NA-MOO scheduler is that it
distributes the computing of the priority over all of the nodes.
As a result, the computing time as well as the complexity of the
scheduler is reduced. The complexity of NA-MOO is exactly
O(log2N), while that of the round robin is O(N). Moreover,
since the NA-MOO scheduler can be implanted into the
crossbar core, the overall area of the scheduler is further
reduced. The wiring delay of the control signals, from scheduler
to crossbar core, is also reduced. The NA-MOO scheduler’s
advantage of higher computing speed and smaller area will be
discussed more in section 3.3.

3.2 The NA-MOO algorithm's unfairness and
no-starvation

A disadvantage of the NA-MOO is that it cannot guarantee
fairness as seen in figure 5. The NA-MOO algorithm gives more
grants to the input ports which are located away from other
active ports.

However, although unlikely in wide-area computer networks,
fairness requirement is not so strict in on-chip networks. In
actual on-chip communication, for instance, the vast and
bustling traffic does not collide at the same time and same
destination on purpose, otherwise the system lastly cease for a
moment until the destined component serves the aggregated
work-load with its limited service capacity. Therefore, output
conflict on an on-chip switch does not often occur unlike a
switch of wide-area computer network, which means unfairness
does not results a big problem. The detail about the unfairness
will be more discussed in section 5.

In NA-MOO algorithm, input ports never starve. Every input
port can get a grant after at least N cell-time slots as long as
there is a cell to be served on the input port, where N is the
number of input ports. This starvation property is the same as in
the round robin algorithm [4].

...

...

...

...

1

2

3

4

5

6

7

8

Request
Sequence

switching
every time

switching
every 2nd time

switching
every 4th time

Granted input port sequence

6: 50%
4: 25%
2: 12.5%
1: 12.5%

Ratio of
grants/port

equal input
badnwidth

...2,6,4,6,1,6,4,6,2,6,4,6,1,6,4,6

requests
selected path

preference move

Figure 5. An example showing the unfairness of NA-MOO

3.3 Advantage of NA-MOO: reduction of area
and computing delay
The hardware of the switch adopting NA-MOO algorithm's
scheduler has high modularity, as shown in figure 3. The
hardware unit, including the multiplexer and the NA-MOO
scheduler macro, is repeated at every node. Figure 6 shows the
hardware implementation of a node, and figure 7 shows the
preference-updating (or toggling) hardware circuits. (See also
Figure 2 for comparison with the round-robin scheduler)

pulse width < 2 gate dealyA.req

B.req

update

preference
value

MUX.sel

O.req

nA

B O

update

MACRO

0

0
1

1

NA-MOO scheduler macro

Figure 6. Implementation of a NA-MOO macro

1

2

0

3

4

1

5

6

0

7

8

0

1

1

1

update signal path
pulse propagation

pulse
generator

Holding

Holding

Holding

Holding

Toggling

Toggling

Toggling

IN

sel

low

demux

Figure 7. Preference updating circuits

Both the NAMOO arbiter and the round-robin arbiter have
two paths: a granting path and a priority-updating path. Table 1
and 2 show the comparison of the gate counts and the critical
path delay, respectively for an 8x8 switch. The NA-MOO
arbiter consumes only 40% hardware resources than the round-
robin arbiter in terms of the gate counts. Moreover, the circuits
of simple priority encoder and the incrementer [5] in round-
robin scheduler need complex wiring and larger gate width
transistors.

The critical path delay of the NA-MOO arbiter is 80% of that
of the round-robin arbiter. Actually, in the case of the round-

robin arbiter, the grant signals should run across the whole
crossbar core vertically and this long traveling signal increases
the scheduler’s latency (see figure 1). However, for the NA-
MOO arbiter, the grant signal is generated at each macro to
control the multiplexer (see figure 3). In this case there is no
need for the grant signal to travel along the long wire.

Table 1. Required hardware resources

NAND/NOR gate
INVERTER
2:1 MUX
D-F/F
smpl_PE
INCREMENTER

NA-MOO
scheduler

48
3

14 (=2(N-1))
0
0
0

127
127

NMOS
PMOS

Hardware elements Round-Robin
scheduler

44
12
0

3 (=log2N)
2
1

359
305# of Tr.

~40% 100%Comparison
 Table 2 Critical delay

Round-Robin
scheduler [14][25]

5*tNAND + 3*tGate of sPE
6*tGate+2*tNAND+tDFF
18 (=8+10) * tINV_EQ

100%~ 80%

NA-MOO
scheduler

(tMUX+2*tNAND)*logN
logN*tMUX+2*tNAND
14 (=9+5) * tINV_EQ

Granting Path
Updating Path
Summation
Comparison

Critical Delay

4. EVALUATION IN HDTV SOC
In this section we apply the proposed NA-MOO algorithm to
the SoC for High Definition Television (HDTV) based on the
video processor with simultaneous decoding of two MPEG2
MP@HL streams and capable of 30frames/s reverse playback
[3]. This SoC contains numerous components compatible with
broadcasting receivers and home multimedia servers, including
a transport stream (TS) decoding engine, and double speed
MPEG2 decoding engine, and I-picture encoding engine of half
HD with 30frames/s, two SDRAM controllers and two
dedicated DSPs. The block diagram of the conventional HDTV
video processor is shown in figure 8. There are two 32bit-wide
135MHz memory buses dedicated to access SDRAM controllers,
and a 121.5MHz DSP bus. This communication architecture is
quite application specific. If there are alterations on the
memories configuration, the communication architecture should
be reconstructed. In addition, because components can use the
memory buses only for the memory access, there should be
additional point-to-point links for other traffics among
components.

For using communication resources efficiently, we replace
the bus-based communication architecture with star-connected
network architecture for the HDTV system as shown in figure 9.
There are three crossbar switches: SW1 constructs a forward
network from master components to slave SDRAM controllers.
SW2 forms a reverse network from the slave SDRAM
controllers to master components such as MC, DSP1, and
Display Engines. Finally SW3 is for the communications
between DSPs and MPEG2 Pipeline. The occasional traffics
from MPEG2 Pipeline are aggregated into a HUB to avoid
complicated links. Each link is 32bit-wide at the speed of
135MHz frequency.

The traffic characteristics between functional blocks are also
shown in the figure 9. Thick arrows in the figure mean major
traffics of bandwidth of giga-bit/s. We only analyze the SW1
(the forward network) on which output conflicts occur among
traffics from DSP1, RC, MC, and Buffer Manager to SDRAM
Controllers for forward 2 channel play operation.

TS
Decoding

Engine

Buffer
Manager

Display
Engine
(Sub)

OSD
Display
Engine
(Main)

SDRAM
Controller

2

SDRAM
Controller

1
VLD IQ IDCT MC RC

DSP
2 I-Frame Encoder

DSP
Core D-Mem

I-Mem

SDRAM

SDRAM

Broadcast
Hardisk

Video out2 Video out1

MPEG2
Pipeline

DSP1Host I/F

Additional units for
reverse playback

32bits,135MHz
Memory Bus

32bits,121.5MHz
Memory Bus

Figure 8. Conventional HDTV video processor with on-chip
bus communication architecture [3]

The input bandwidth of port #0 is negligible. The bandwidth
of other ports from 1 to 3 is 1.5Gbps, 240Mbps, and 160Mbps,
respectively. The size of a packet is 32bits, and all traffics are
bursty with burst length of 9 packets where the first packet has a
memory address for writing to SDRAM. We adopt the proposed
NA-MOO algorithm in the switch to analyze the performance
such as packet latency or required buffer length. We also used a
round robin based SLIP algorithm for comparison under same
condition.

BM
SDRAMC1/2
SDRAMC1/2
RC
SDRAMC1/2
IFE
RC
DSP1

DSP1
DSP2
IFE
DSP2

SDRAMC1/2
DSP1
MC
SDRAMC1/2
DISPLAY(M/S)
SDRAMC1/2
IFE
VLD/IQ/IDCT/
MC/RC
DISPLAY(1/2)
IFE
DSP2
DISPLAY(1/2)

160Mbps
160Mbps
3Gbps
1.5Gbps
3Gbps/3Gbps
-
-
RANDOM

RANDOM
RANDOM
-
RANDOM

80Mbps
80Mbps
1.5Gbps
0.75Gbps
1.5Gbps/1.5Gbps
1.5Gbps
0.75Gbps
RANDOM

RANDOM
RANDOM
RANDOM
RANDOM

Bit
Stream

IQ MCVLD IDCT
MPEG2
Pipeline

DISPLAY1

DISPLAY2

SW3

D
SP

1

D
SP

2

Buffer
Manager

Hub

IFE

RC

SW2SW1

SDRAM Ctr1/2

Source Destination
Forward 2-ch play

Traffic Characteristic
Reverse play

Major Traffic

0123

Input Port#

Output
Port

Figure 9. On-chip networks for HDTV applications

In the NA-MOO scheduler, by allocating the negligible
traffic (=port #0) beside the major traffic (=port #1), the port #1
of major traffic gets more grants than the other ports of #2, and
#3. This is actually unfair among input ports as observed in
section 3.2.

As a result shown in figure 10, the port #1 is served with
shorter latency in NA-MOO scheduler than that in SLIP
scheduler. At the same time, the minor traffic ports #2 and #3
are served with longer latency in NA-MOO than that in SLIP.
The average packet latency over the whole packets on the
switch is the same as that of SLIP scheduler. The required input
buffer size of NA-MOO scheduler is almost the same as that of
SLIP scheduler. By observing the plots, the characteristic on the
ports seems to be more regulated in NA-MOO than that in SLIP.

Figure 11 shows packet latency distribution of whole packet
on the switch for two kinds of schedulers. Due to the shorter
latency of the major traffic (=port #1), less deviation on the
packet latency distribution is obtained in the NA-MOO
scheduler than that in the SLIP scheduler. There are two
principal peaks in SLIP while one peak in NA-MOO.

Port1
1500Mbps

Port2
240Mbps

Port3
180Mbps

Latency [nsec] Max. Queue Length [9 burst packets]

0

50

100

150

200

250

0

1

2

3

4

5

6

Port1
1500Mbps

Port2
240Mbps

Port3
180Mbps

NAMOO

SLIP

NAMOO

SLIP

Figure 10. Packet latency and required input buffer size per

port

0

10
0

20
0

30
0

40
0

50
0

0 30 60 90 12
0

15
0

18
0

21
0

24
0

27
0

30
0

33
0

36
0

39
0

42
0

45
0

48
0

51
0

54
0

57
0

Packet Latency [nsec]

Pa
ck

et
 C

ou
nt

s NAMOO
SLIP

Port1Port2&3

Figure 11. Packet latency distribution

By the simulation results for the HDTV SoC, the NA-MOO
algorithm serves more fairly over input ports in the situation
where the bandwidth of the input ports is uneven among the
ports. Actually, in the SoC networks unlike the computer
networks, the traffic patterns can be known in design stage, and
those are not evenly distributed among links as shown in HDTV
applications. This means that there are major traffics and minor
traffics together on a switch.

From the analysis results of HDTV SoC, the NA-MOO
scheduler is adequate for SoC networks in the aspect of silicon
area, computing speed, and also the switching performance.

5. CONCLUSION
We have presented a lightweight crossbar switch scheduling

algorithm especially for on-chip interconnection networks. The
scheduler implementation of the proposed algorithm shows
more than 60% area reduction and 20% computation delay
reduction than conventional one with round robin based SLIP
algorithm. Although the proposed algorithm does not always
guarantee the fairness among input ports, once the traffic
characteristics on the SoC networks are known, the algorithm
serves more fairly among input ports.

The proposed algorithm demonstrates area-efficient and
higher performance for the on-chip interconnection networks
through an application example of HDTV SoC.

6. REFERENCES
[1] L. Benini and G. Micheli , “Networks on Chips: A New SoC

Paradigm,” in Computer Magazine, Vol.35 Issue:1, Jan. 2002, pp.
70-78

[2] Se-Joong Lee et al., “An 800MHz Star-Connected On-chip
Network for Application to System on a chip,” IEEE ISSCC Dig.
Tech. Papers, Feb. 2003, pp. 468-469

[3] H. Yamauchi et al., “A 0.8W HDTV Video Processor with
Simultaneous Decoding of Two MPEG2 MA@HL Streams and
Capable of 30frames/s Reverse Playback,” IEEE ISSCC Dig. Tech.
Papers, Feb. 2002, pp. 372-373

[4] P. Gupta and N. McKeown, “Designing and Implementing a Fast
Crossbar Scheduler,” IEEE Micro, Vol. 19 Issue: 1,1999 Pp.20-28

[5] C. Huang et al., “Design of High-Performance CMOS Priority
Encoders and Incrementer/Decrementers Using Multilevel
Lookahead and Multilevel Folding Techniques,” Solid State
Circuits, IEEE Journal of, Vol.37 Issue:1, Jan. 2002 Pp.63-76

