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Abstract 
A scheduling algorithm is proposed for lightweight on-chip 

crossbar switch in on-chip networks. The proposed NA-MOO 
algorithm distributes the arbitration computing over all of the 
crossbar fabric nodes. Its implementation shows that it can 
reduce  > 60% area and > 20% computation delay compared to 
conventional round robin based SLIP algorithm. Its feasibility 
is analyzed by using a SoC for HDTV as an example. The 
proposed techniques are area-efficient and show higher 
performance for the on-chip interconnection networks. 

1. INTRODUCTION 
System-on-chip (SoC) provides integrated solutions to 

challenging design problems in telecommunications, 
multimedia, and consumer electronics domains. One of the 
bottlenecks for achieving the operational goal of SoCs is the on-
chip physical interconnection that will present a limiting factor 
for performance and, possibly, energy consumption [1]. 
Recently, a general-purpose on-chip interconnection network 
became of interest as a replacement for design-specific global 
on-chip wiring [1-2]. Using a network, which exploits the 
methods and tools used for general computer networks, is 
known to achieve efficient communication on SoCs [1]. An 
essential component of SoC networks and the computer 
networks is a switch fabric circuit, by which all network traffic 
is routed from ingress ports to egress ports. In particular, a 
nonblocking crossbar switch is widely used for a high-speed 
switching since it is free of interconnect contention and needs 
less buffer bandwidth. While most attention is focused on speed 
and capacity issues of switch fabrics in legacy computer 
networks, the silicon area of the switch fabric, including the 
crossbar core, input/output buffers and a crossbar scheduler, is 
becoming of a concern for SoC networks [2]. 

The success of on-chip network architecture depends on the 
ability to keep the overall area overhead to its minimum. The 
major components of a crossbar switch are in/out buffers, a 
crossbar core and an on-chip scheduler. 
To reduce the area of a switch fabric core the link serialization 
is efficient [2]. This 4:1 serialization reduces the size of the 
switch core to 1/16, but the size of in/out buffers and a 
scheduler remain unchanged. 

The area of the on-chip switch is heavily dominated by the 
space occupied by the on-chip buffers. This space limitation of 
the on-chip buffer comes in deep contrast with real data 
networks where there is ample room for very large buffers. 
Under these circumstances, the virtual output queueing (VOQ) 
scheme for alleviating head of line (HOL) blocking is difficult 
to be adopted since the VOQ needs non-shared independent 
input buffers of N2. Moreover, VOQ is not so efficient because 
the traffic patterns of SoC networks are not as random as traffic 
patterns of data networks. To make matters worse, adopting 
VOQ increases the crossbar scheduler complexity twofold [4]. 
For SoC networks with a star topology, HOL blocking is very 
rare because a switch port is dedicated to a computing node. As 
a result, VOQ is inappropriate for on-chip networks so that we 
assume the input buffer as FIFO queueing not VOQ. 

In this paper, we propose a method to reduce the area of 
OCN: a NA-MOO algorithm for the reduction of the area of an 
on-chip scheduler. By using this method we reduce the area of 
the scheduler by 60%. In addition, the speed of the scheduler is 
20% faster than that of a conventional scheduler. 

This paper is organized as follows: in section 2 the 
conventional crossbar's scheduler circuits are explained; in 
section 3 we propose a new crossbar scheduling algorithm 
which is compared with a conventional round robin algorithm 
from a viewpoint of an area, a computing speed and a switching 
performance especially for HDTV applications in section 4. 
Finally conclusion will be made in section 5. 

2. BACKGROUND 
A block diagram of a general crossbar scheduler with FIFO 

queueing is shown in figure 2.1. It consists of three blocks: 
input FIFO buffer, arbiters for each output port and a crossbar 
fabric core. Each input buffer generates a request to a destined 
output port’s arbiter. Each arbiter selects a request among input 
ports to use the output link. The arbiter then generates proper 
control signals for the crossbar core to set up a path from the 
granted input port and gives a grant signal to the granted input 
port. The granted input queue transfers the packet through the 
crossbar core. 
2.1. Crossbar Scheduler 

An intelligent centralized scheduler is needed to guarantee 
the fairness among input ports and to use the switch fabric 
efficiently in the network switches and routers. Most crossbar 

schedulers are based on a round robin [4]. (See figure 1.) The 
round robin has a rotating priority denoted by P. The round 
robin arbiter guarantees that none of the input ports are starved, 
and that all are treated fairly. However, hardware for the round-
robin arbiter is too complicated to integrate within a SoC [4]. 

State-of-the-art implementation of a round robin is shown 
in figure 2. A round-robin arbiter consists of a programmable 
priority encoder (PPE), registers to memorize the priority 
pointer, an incrementer and a binary encoder. The PPE consists 
of two simple priority encoders (smpl_PE), a thermal encoder 
and bitwise AND/OR gates. The fastest and smallest smpl_PE 
that use a multi-level look-ahead and folding scheme was 
proposed in [5]. The centralized priority pointer makes the 
round-robin scheduler complicated. 
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Figure 1. Crossbar switch with FIFO Queueing and 
round-robin arbiters [4] 



Therefore, we propose a new crossbar-scheduling algorithm 
called NA-MOO, which uses neither a centralized priority nor 
the area-consuming round-robin arbiter. Furthermore, since the 
NA-MOO scheduler can be implanted into a crossbar fabric 
core, the wiring area between the scheduler and the crossbar 
core can be removed. A description and a performance analysis 
are presented in detail in section 3. 
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Figure 2. Implementation of a round-robin arbiter [4-5] 

3. Proposed NA-MOO algorithm 
3.1 Description of the NA-MOO algorithm  
The proposed NA-MOO algorithm's scheduler embedded in 
crossbar core is shown in figure 3. This is mixture of the 
crossbar scheduler and Mux-Tree-based crossbar fabric core for 
an output port. 
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Figure 3. Proposed NA-MOO algorithm scheduler mixed 
with crossbar core 

The arbitration computing is centralized and the priority 
rotates in a fixed round-robin fashion at round robin based SLIP 
algorithm [4]. On the contrary, at NA-MOO algorithm, the 
computing is distributed over crossbar core nodes and the 
priority is determined by each node's state. We call the state 
preference value. Due to the distributed computing rather than 

centralized computing, the NA-MOO scheduler complexity is 
reduced. 

Each node from (1) to (7) in figure 3 has a 1-bit preference 
value in its NA-MOO scheduler macro by which each node’s 
multiplexer selects an input to be transfer through the node. 
Actually the preference value is referred only when both inputs 
bring requests i.e. output conflict. (See figure 4)  

By a propagation of (a request, packet data) through the 
multiplexer at each stage, only one packet data reaches the 
output port as shown as a dot line in figure 3. This is the so-
called crossbar arbitration. 
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After a packet is transferred through a granted path from the 
granted input port to the output port, the preference values are 
toggled along the granted path to give the granted input port the 
lowest priority. This updating mechanism is similar to SLIP 
algorithm, which leads to a desynchronization of the output 
arbiters [4]. For example, in figure 3, if input #7 is granted; the 
preference values of (4), (6) and (7) nodes are toggled while 
other multiplexers don’t change their preference values.  Then, 
the path from the input #7 to the output is totally blocked 
because each node prefers the opposite path by altering 
preference values. Therefore, the input port #7 gets the lowest 
priority after granted. 

The most distinctive feature NA-MOO scheduler is that it 
distributes the computing of the priority over all of the nodes. 
As a result, the computing time as well as the complexity of the 
scheduler is reduced. The complexity of NA-MOO is exactly 
O(log2N), while that of the round robin is O(N). Moreover, 
since the NA-MOO scheduler can be implanted into the 
crossbar core, the overall area of the scheduler is further 
reduced. The wiring delay of the control signals, from scheduler 
to crossbar core, is also reduced. The NA-MOO scheduler’s 
advantage of higher computing speed and smaller area will be 
discussed more in section 3.3. 

3.2 The NA-MOO algorithm's unfairness and 
no-starvation 

A disadvantage of the NA-MOO is that it cannot guarantee 
fairness as seen in figure 5. The NA-MOO algorithm gives more 
grants to the input ports which are located away from other 
active ports. 

However, although unlikely in wide-area computer networks, 
fairness requirement is not so strict in on-chip networks. In 
actual on-chip communication, for instance, the vast and 
bustling traffic does not collide at the same time and same 
destination on purpose, otherwise the system lastly cease for a 
moment until the destined component serves the aggregated 
work-load with its limited service capacity. Therefore, output 
conflict on an on-chip switch does not often occur unlike a 
switch of wide-area computer network, which means unfairness 
does not results a big problem. The detail about the unfairness 
will be more discussed in section 5. 

In NA-MOO algorithm, input ports never starve. Every input 
port can get a grant after at least N cell-time slots as long as 
there is a cell to be served on the input port, where N is the 
number of input ports. This starvation property is the same as in 
the round robin algorithm [4]. 
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Figure 5. An example showing the unfairness of NA-MOO 

3.3 Advantage of NA-MOO: reduction of area 
and computing delay 
The hardware of the switch adopting NA-MOO algorithm's 
scheduler has high modularity, as shown in figure 3. The 
hardware unit, including the multiplexer and the NA-MOO 
scheduler macro, is repeated at every node. Figure 6 shows the 
hardware implementation of a node, and figure 7 shows the 
preference-updating (or toggling) hardware circuits. (See also 
Figure 2 for comparison with the round-robin scheduler) 
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Figure 6. Implementation of a NA-MOO macro 
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Figure 7. Preference updating circuits 

Both the NAMOO arbiter and the round-robin arbiter have 
two paths: a granting path and a priority-updating path. Table 1 
and 2 show the comparison of the gate counts and the critical 
path delay, respectively for an 8x8 switch. The NA-MOO 
arbiter consumes only 40% hardware resources than the round-
robin arbiter in terms of the gate counts. Moreover, the circuits 
of simple priority encoder and the incrementer [5] in round-
robin scheduler need complex wiring and larger gate width 
transistors. 

The critical path delay of the NA-MOO arbiter is 80% of that 
of the round-robin arbiter. Actually, in the case of the round-

robin arbiter, the grant signals should run across the whole 
crossbar core vertically and this long traveling signal increases 
the scheduler’s latency (see figure 1). However, for the NA-
MOO arbiter, the grant signal is generated at each macro to 
control the multiplexer (see figure 3). In this case there is no 
need for the grant signal to travel along the long wire. 

Table 1. Required hardware resources 
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4. EVALUATION IN HDTV SOC 
In this section we apply the proposed NA-MOO algorithm to 
the SoC for High Definition Television (HDTV) based on the 
video processor with simultaneous decoding of two MPEG2 
MP@HL streams and capable of 30frames/s reverse playback 
[3]. This SoC contains numerous components compatible with 
broadcasting receivers and home multimedia servers, including 
a transport stream (TS) decoding engine, and double speed 
MPEG2 decoding engine, and I-picture encoding engine of half 
HD with 30frames/s, two SDRAM controllers and two 
dedicated DSPs. The block diagram of the conventional HDTV 
video processor is shown in figure 8. There are two 32bit-wide 
135MHz memory buses dedicated to access SDRAM controllers, 
and a 121.5MHz DSP bus. This communication architecture is 
quite application specific. If there are alterations on the 
memories configuration, the communication architecture should 
be reconstructed. In addition, because components can use the 
memory buses only for the memory access, there should be 
additional point-to-point links for other traffics among 
components.  

For using communication resources efficiently, we replace 
the bus-based communication architecture with star-connected 
network architecture for the HDTV system as shown in figure 9. 
There are three crossbar switches: SW1 constructs a forward 
network from master components to slave SDRAM controllers. 
SW2 forms a reverse network from the slave SDRAM 
controllers to master components such as MC, DSP1, and 
Display Engines. Finally SW3 is for the communications 
between DSPs and MPEG2 Pipeline. The occasional traffics 
from MPEG2 Pipeline are aggregated into a HUB to avoid 
complicated links. Each link is 32bit-wide at the speed of 
135MHz frequency. 

The traffic characteristics between functional blocks are also 
shown in the figure 9. Thick arrows in the figure mean major 
traffics of bandwidth of giga-bit/s. We only analyze the SW1 
(the forward network) on which output conflicts occur among 
traffics from DSP1, RC, MC, and Buffer Manager to SDRAM 
Controllers for forward 2 channel play operation. 
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The input bandwidth of port #0 is negligible. The bandwidth 
of other ports from 1 to 3 is 1.5Gbps, 240Mbps, and 160Mbps, 
respectively. The size of a packet is 32bits, and all traffics are 
bursty with burst length of 9 packets where the first packet has a 
memory address for writing to SDRAM. We adopt the proposed 
NA-MOO algorithm in the switch to analyze the performance 
such as packet latency or required buffer length. We also used a 
round robin based SLIP algorithm for comparison under same 
condition. 
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Figure 9. On-chip networks for HDTV applications 

In the NA-MOO scheduler, by allocating the negligible 
traffic (=port #0) beside the major traffic (=port #1), the port #1 
of major traffic gets more grants than the other ports of #2, and 
#3. This is actually unfair among input ports as observed in 
section 3.2.  

As a result shown in figure 10, the port #1 is served with 
shorter latency in NA-MOO scheduler than that in SLIP 
scheduler. At the same time, the minor traffic ports #2 and #3 
are served with longer latency in NA-MOO than that in SLIP. 
The average packet latency over the whole packets on the 
switch is the same as that of SLIP scheduler. The required input 
buffer size of NA-MOO scheduler is almost the same as that of 
SLIP scheduler. By observing the plots, the characteristic on the 
ports seems to be more regulated in NA-MOO than that in SLIP. 

Figure 11 shows packet latency distribution of whole packet 
on the switch for two kinds of schedulers. Due to the shorter 
latency of the major traffic (=port #1), less deviation on the 
packet latency distribution is obtained in the NA-MOO 
scheduler than that in the SLIP scheduler. There are two 
principal peaks in SLIP while one peak in NA-MOO.  
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Figure 10. Packet latency and required input buffer size per 
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By the simulation results for the HDTV SoC, the NA-MOO 
algorithm serves more fairly over input ports in the situation 
where the bandwidth of the input ports is uneven among the 
ports. Actually, in the SoC networks unlike the computer 
networks, the traffic patterns can be known in design stage, and 
those are not evenly distributed among links as shown in HDTV 
applications. This means that there are major traffics and minor 
traffics together on a switch. 

From the analysis results of HDTV SoC, the NA-MOO 
scheduler is adequate for SoC networks in the aspect of silicon 
area, computing speed, and also the switching performance. 

5. CONCLUSION 
We have presented a lightweight crossbar switch scheduling 

algorithm especially for on-chip interconnection networks. The 
scheduler implementation of the proposed algorithm shows 
more than 60% area reduction and 20% computation delay 
reduction than conventional one with round robin based SLIP 
algorithm. Although the proposed algorithm does not always 
guarantee the fairness among input ports, once the traffic 
characteristics on the SoC networks are known, the algorithm 
serves more fairly among input ports. 

The proposed algorithm demonstrates area-efficient and 
higher performance for the on-chip interconnection networks 
through an application example of HDTV SoC. 
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