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Abstract 
The real time 3D graphics becomes one of the attractive applications for 3G wireless terminals although 
their battery lifetime and memory bandwidth limit the system resources for graphics processing. Instead 
of using the dedicated hardware engine with complex functions, we propose an efficient hardware archi-
tecture of low power vertex shader with programmability. Our architecture includes the following three 
features: I) a fixed-point SIMD datapath to exploit parallelism in vertex processing while keeping the 
power consumption low, II) a multithreaded coprocessor interface to decrease unwanted stalls between 
the main processor and the vertex shader, reducing power consumption by instruction-level power man-
agement, III) a programmable vertex engine to increases the datapath throughput by concurrent opera-
tions with main processor. Simulation results show that full 3D geometry pipeline can be performed at 
7.2M vertices/sec with 115mW power consumption for polygons using the OpenGL lighting model. The 
improvement is about 10 times greater than that of the latest graphics core with floating-point datapath 
for wireless applications in terms of processing speed normalized by power consumption, Kvertices/sec 
per milliwatt. 

Category and Subject Descriptors: I.3.1 [Computer Graphics]: Hardware Architecture––Graphics Proc-
essor   C.1.2 [Processor Architecture]: Multiple Data Stream Architectures––Single–instruction–stream, 
multiple–data–stream processor (SIMD)

1. Introduction 
 

As the mobile electronics market increases rapidly, 
3G wireless terminals such as PDAs or mobile phones 
get more popular. Since these applications have the dis-
play devices, the rendering capabilities from simple two-
dimensional graphics even to the real time three-
dimensional graphics will be necessary to provide more 
realistic functionalities. 

For the wireless applications, the low power con-
sumption is the most important issue because they are 
driven by batteries. The Advanced RISC Machines 
(ARM) processor family that has the reduced instruction 
set computer (RISC) architecture is most widely used as 
a main platform for the wireless applications because of 
its high MIPS/Watt [Cla02]. Since there are very limited 
system resources in terms of computation power and 
memory bandwidth, the graphics architecture should be 
designed to consume as little energy as possible on the 

ARM platform. Moreover, since the users hold the small 
screens of wireless terminals close to their eyes, the 
average eye-to-pixel angle is wider than that of a PC 
system. Therefore we must provide more realistic graph-
ics images with low power consumption in wireless 
terminals. 

Recently, several researches have tried to increase 
the mobile graphics capabilities in wireless applications. 
Since the rasterization and texture mapping require more 
processing complexities than the rest of operations in the 
3D graphics pipeline [ODK*00], most of graphics archi-
tectures have mainly focused on the rendering pipeline 
and achieved the efficient graphics performances 
[AMS03][WCS*03]. However, since relatively little 
attention has been given to 3D geometry operations, 
now they become the performance barriers in 3D graph-
ics pipeline. The geometry units of graphics systems in 
PC and workstations [LKM01][MBD*97] show high 
performance while consuming much power. For wireless 
applications, the general-purpose RISC processors with 
simple integer datapath [WCS*03] or conventional float-
ing-point datapath [KKF*03] were used to process ver-
tex shading operations. However, the simple integer 
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datapath could not provide the required performance of 
vertex shading. In conventional floating-point datapath, 
the performance is also limited due to low operating 
frequency within allowed budget of limited power 
consumption. 

In this paper, we propose a programmable vertex 
shader for the low power wireless applications. It can fill 
the gap between the flexible high performance 3D ge-
ometry systems and the low power wireless platforms 
with limited system resources. The proposed hardware 
architecture for low power vertex shader has three major 
features: 

1) a fixed-point SIMD datapath that uses an energy-
efficient fixed-point arithmetic to exploit data level 
parallelism in vertex processing while keeping the 
power consumption low, 

2) a multithreaded ARM coprocessor interface - an 
instruction extension mechanism of ARM platform, 
which decreases the unwanted stalls between the main 
processor and the vertex shader, and reduces power 
consumption by instruction-level power management, 
and 

3) a programmable vertex engine that increases the 
datapath throughput for streaming vertex data input by 
concurrent operations with the main processor while 
saving the external memory bandwidth. 

 
This paper is organized as follows. First, the hardware 

architecture of the proposed vertex shader is described, 
and followed by a discussion about the program model. 
Then the implementation details are presented. After that, 
simulation results and evaluations are provided. Finally 
conclusions are made. 

 
2. Architecture  

 
Figure 1 shows the system configuration of our 

graphics architecture and the gray blocks indicate the 
proposed vertex shader. All hardware blocks including 
vertex shader are connected to the ARM10 RISC proc-
essor through the coprocessor interface, and use system 
bus interfaces for external memory accesses. In this 
section, the hardware architecture of the vertex shader is 
described focusing the three previously mentioned fea-
tures. 

2.1. Fixed-point SIMD Datapath 

Most 3D graphics systems require real number rep-
resentation to support various 3D rendering algorithms. 
We use fixed-point number format for real number rep-
resentation as shown in Figure 2.(a) [Kol02]  instead of 
using floating-point number. There are two reasons for 
this. First, the hardware architecture of fixed-point 
arithmetic is much simpler than that of floating-point 
arithmetic because fixed-point arithmetic uses only inte-
ger datapath. Therefore the fixed-point unit can occupy 
less silicon area, and it can consume less power. Second, 
because fixed-point unit can operate at higher clock 
speed, it can process the same task faster than floating-
point unit. Therefore, we can use less energy when ap-
plying fixed-point arithmetic in the graphics operations. 
For matrix multiplication, 32-bit fixed-point hardware 
consumes 17% less power than single precision floating-
point multiplier. It can also operate at 30% higher clock 
frequency. 

To evaluate the accuracy of the fixed-point arithme-
tic in the 3D geometry operations, the following equa-
tions can be used to decide the number of bits for frac-

Figure 1: System configuration and block diagram 
of proposed vertex shader 
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tional part of Qm.n fixed-point number [HV01], where 
the ‘m’ is the number of bits representing integer part 
and ‘n’ is the number of bits representing fractional part. 

for transformation, 

for lighting, 

where ‘nf’ is the number of fractional bits to get na 
bits of accuracy after transformation and lighting 
calculations. 

The screen resolution and color depth of wireless 
terminals are relatively small, for example the common 
displays of today’s wireless application such as QVGA  
has 320 x 240 resolution with 16-bit color depth. In this 
case, 14 or 15 bits are enough for the fractional part to 
get pixel level accuracy  

Our architecture utilizes 128-bit wide 4-way SIMD 
instructions, enabling to concurrently process up to four 
32 bit fixed-point data elements in a single cycle. To 
improve the usefulness in fixed-point arithmetic, status 
registers are applied to indicate the overflows and under-
flows occurred in the multiplications of two fixed-point 
numbers as shown in Figure 2.(b). These status registers 
can be used to check errors in fixed-point arithmetic 
without extra cycle penalties. 

In order to enhance the dynamic range further in real 
number representation, we add controlled ADD/SUB 
(CAS) instruction and controlled logical shift (CLS) 
instruction (Figure 3) for software emulation of floating-
point arithmetic to fixed-point SIMD instructions. After 
updating negative flag in arithmetic status register by 
previous instructions such as SUB, we can make CAS 
instruction be a single ADD instruction or SUB instruc-
tion. We can also make CLS instruction be a single left 
shift instruction or right shift instruction. These instruc-
tions can reduce the unnecessary comparison operations 
in exponent alignment and normalization of floating-
point arithmetic. With floating-point emulation, our 
architecture shows 160Mflops performance at 400MHz 
clock speed. 

2.2. Multithreaded ARM Coprocessor 

The ARM architecture supports an extension of the 
instruction set architecture by adding coprocessors 
[Fur02]. The proposed architecture is integrated with 
ARM10 RISC processor. The coprocessor interface is 
used to interconnect the proposed architecture with main 
processor because of the following reasons  

▪ Since the coprocessor operates in lock step with core 
pipeline of the main processor, it can avoid a complex 
synchronization and provide a single context of control. 
▪ The coprocessors have the direct signal paths from 

the main processor. They don’t need the bus arbitrations 
for hardware accesses contrary to conventional hardware 
accelerators, which use the shared system bus. Therefore, 
coprocessor interface can reduce the unwanted stalls 
between main processor and hardware accelerators. 
▪ Since the data cache of main processor can be 

shared to store graphics primitives as well, additional 
memories are not necessary to store vertex data. 

To achieve high graphics performance at low power 
consumption, we add two additional features to the con-
ventional coprocessor. First, a multithread architecture is 
proposed to enable the stream processing of vertex data. 
For this, three independently accessible register files are 
used for storing input vertex data, output vertex data and 
temporary results. The vertex shader processes polygon 
data stored in input vertex register file, and generates the 
shaded vertex output to the output vertex register file. 
The general purpose SIMD register file is used to hold 
the temporary results. Second, the coprocessor can be 
activated only when it is required on an instruction-by-
instruction basis. If the current instruction is not a valid 
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Figure 3: Special instructions for floating-point 
emulation 
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coprocessor instruction, clock signal is not supplied to 
the fixed-point SIMD arithmetic units in datapath. As 
shown in Figure 4, the instruction valid signal driven in 
the early stage of the main processor pipeline disables 
the unnecessary hardware blocks of the coprocessor 
datapath to reduce power consumption. 

2.3. Programmable Vertex Engine 

In general, the ARM coprocessor cannot be operated 
without instruction issuing from the main processor. 
Therefore, the datapath of  the main processor is stalled 
while the coprocessor executes instructions.  Because it 
leads to the performance degradation of main processor 
when processing the streaming vertex data, we improve 
the throughput of main processor and vertex shader by 
allowing coprocessor to  execute the vertex program 
independently. 

Figure 5 shows the internal architecture of the vertex 
engine. After downloading the vertex program into the 
internal code memory via the coprocessor interface, the 
vertex shader starts executing each instruction running 
free from main processor. As previously mentioned, the 
vertex shader is a multithreaded coprocessor with fixed-
point SIMD datapath. The input vertex register file that 
is used to hold the vertex attributes such as position and 
normal vector is fed into the fixed-point SIMD datapath. 
The vector arithmetic unit is responsible for all 
arithmetic operations such as addition and multiplication, 
and the special function unit is responsible for reciprocal 
(RCP) and reciprocal square root (RSQ). Most of the 
operations are performed as the 32 bit fixed-point 
numbers, and achieve a single cycle pipelined 
throughput. The constants such as transformation matrix, 
lighting parameters and lookup table entries are stored in 

the display list buffer and temporary results are stored in 
the general purpose SIMD register file. The shaded 
vertex output is transformed into one of the ouput vertex 
register files. There are three output vertex reigter files 
for caching of vertex data in the primitive assembly and 
only one of them is accessible in the vertex program. To 
save the silicon area, only one input vector operand can 
be swizzled aribitrarily in the SIMD datapath and  all the 
output writes can be controlled by component-wise write 
mask bits 

In the vertex shader, we have the display list buffer 
to store graphics primitives, reducing the traffic on 
external memory I/O. Also, the display list buffer can be 
shared to hold vertex constants at the same time for 
design simplicity of hardware. To enhance the efficiency 
of addressing, we have two integer address registers for 
indexed display list buffer reads. In addtion, the display 
list buffer has the following two features. 

▪ Auto increment and decrement addressing modes: 
the address register can be updated automatically after 
indexed display list buffer reads, which is useful to man-
age the vertex streams. 

▪ 8 bit / 16 bit unpack with shuffling of vector com-
ponents: For geometry compression, the 8 bit or 16 bit 
read data from the display list buffer can be automati-
cally sign-extended to the full 32 bit fixed-point num-
bers, which can be used as the delta difference between 
one vertex and the next vertex [Dee95]. 

 

3. Program Model 
 
In this section, we will describe the program model 

of the proposed vertex shader including the processor 
operating states and the instruction set architecture. 

3.1. Dual Personality  
 
The main purpose of our design is to use the simple 

program model through ARM coprocessor interface, 
while improving the datapath performance with low 
power consumption for vertex data streams. From the 
programmer’s point of view, the vertex shader can be in 
one of two states as shown in Figure 6. 

1) Tightly coupled coprocessor (TCC): All instruc-
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tions of the vertex shader are issued in the instruction 
stream of the main processor as extended instructions 
and, they are executed in lock step with main pipeline. 

2) Parallel processor (PP): In this state, vertex shader 
can process the vertex program stored in the internal 
code memory without instruction issues from main 
processor. The vertex shader can achieve the maximum 
throughput of datapath because it can operate concur-
rently with main processor [Gan98]. The main processor 
reads the vertex attributes in the main memory and feeds 
them into the vertex shader while vertex program is 
executed. To maintain the communication protocol of 
the ARM coprocessor interface, the vertex shader drives 
the coprocessor busy signals to the main processor, lead-
ing next coprocessor instruction to busy-wait loop for 
system synchronization. 

3.2. Instruction Set 

We use two kinds of instruction set architectures for 
each processor operating state. The instruction set in 
TCC state contains all data processing and transfer in-
structions for vertex shader. In PP state the instruction 
set consists of 20 operations, which are the modified 
subset of the previous programmable vertex engine 
[LKM01]. Table 1 shows the instruction set of vertex 
program that can be executed in PP state. 

  
3.2.1 Control flow instructions 

In TCC state, the control flow instructions such as 
branch and return are managed by the main processor 
and the vertex shader executes only the extended SIMD 
arithmetic instructions. However all vertex shader 
instructions are conditionally executed to maximize 
execution throughput. They affect on the memory and 
registers only if the arithmetic flags (negative, zero, 

carry out and overflow) satisfy a condition specified in 
the instruction. When implementing the fixed function 
pipeline of graphics library such as OpenGL which is 
controlled by global states, the state checking, vertex 
shading path selection, homogeneous clip space 
operations and back face culling are handled in TCC 
state. The remaining code segments for actual vertex 
shading operations can be executed without state 
checking. These operations are carried out in the vertex 
program of PP state. It supports the vertex transform 
paths without branching for simplicity and efficiency of 
hardware architecture. Even if the control flow 
instructions are not supported in PP state, simple 
if/then/else statement is still possible through SLT, SGE 
and SEQ instructions. 

3.2.2 Fixed-point SIMD arithmetic instructions 
To save the system resources, we make the 

datapath simple and efficient without complex hardware 
blocks. All arithmetic operations including RCP and 
RSQ are executed on the fixed-point numbers that can 
have any precisions, using only low power interger 
arithmetic units. They are also fully pipelined and 
bypassed to forward the data to the different stage of 
pipeline of correct instructions.  

Since the multiplication equivalent instructions 
consume most of time in vertex shading operations, we 
make the throughput of MUL and MAD be a single 
cycle, and support dot products for coding convenience. 
Moreover we add TRFM instruction to enhance the 
performance of the vertex transformation in 

Table 1: Instruction set of vertex program 
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homogeneous coordinates. Although the latency of 
MUL and MAD are four cycles, TRFM instruction can 
calculate the vertex transform-ation at every four cycles 
with the help of broadcasting of vector elements and 
internal bypass network of intermediate values as shown 
in Figure 7. 

For design simplicity, we remove the complex 
functions such as the logarithmic, exponential and 
specular power functions, and rather the table look-up is 
used for these functions. The integer shift instructions of 
fixed-point numbers are added in order to extract bit 
fields for index calculations in the lookup table. After 
shift operations of vertex specific index, the ARL 
instruction can allow an offset into the lookup table. 

The following vertex program implements the vertex 
transformation and full Phong shading. It uses OpenGL 
lighting equations assuming infinite light and viewpoint 
positions. To calculate the specular power function, we 
use the lookup table of 64 entries which store the 
specular coefficients for given shininess value. After 
calculating dot product of normal vector and the Blinn 
halfway vector, we use the integer shift instructions for 
offset values. After the rearrangements of the 
instructions for compiler optimization, the proposed 
hardware running at 400MHz can process these vertices 
at a rate of 7.2M vertex/sec including view frustum clip 
check, perspective division and viewport transform. 

# Vertex Transformation and OpenGL Lighting 
# 
# c[0-3]      = modelview matrix (column-wise) 
# c[4-7]      = modelview inverse transpose (column-wise) 
# c[8-11]    = modelview projection matrix (column-wise) 
# c[16]       = light position 
# c[17]       = blinn halfway vector 
# c[18]       = precomputed specular light * specular mat. 
# c[19]       = precomputed diffuse light  * diffuse mat. 
# c[20]       = precomputed ambient light  * ambient mat. 
# c[32-47]  = 64 entries lookup table for specular power (column-wise) 
# c[48]       = 16th, 32th, 48th and 64th entries of lookup table 
# c[49].x    = fraction bit length of fixed-point format 
# c[49].y    = fraction bit length - 2 
# c[49].z    = fraction bit length - 6 
# c[49].w   = fraction bit length + 4 
# c[50]       = (0, 1, 2, 3) in integer format 
 
# Vertex transformation to eye space 
TRFM VGR0.xyz, VIR[OPOS], c[0]; 
 
# Normal vector transform to eye space 
TRFM VGR1.xyz, VIR[NRML], c[4]; 
 
# Vertex transformation to clip space 
TRFM VOR[HPOS], VIR[OPOS], c[8]; 
 
# Compute normalized light direction 
SUB  VGR0.xyz, VGR0, c[16]; 
DP3  VGR0.w, VGR0, VGR0; 
RSQ  VGR0.w, VGR0.w; 
MUL  VGR0.xyz, VGR0, VGR0.w; 
 
# Compute N.L and N.H 
DP3  VGR2, VGR1, VGR0; 
DP3  VGR3, VGR1, c[17]; 
 
# Index calculation of lookup table for specular power function 
ASR  VGR4, VGR3, c[49].y; 
ASR  VGR5, VGR3, c[49].z; 
LSL  VGR6, VGR5, c[49].z; 
SUB  VGR6, VGR3, VGR6; 
LSL  VGR5, VGR5, c[49].x; 
LSL  VGR7, VGR4, c[49].w; 
SUB  VGR5, VGR5, VGR7; 

 
# table look-up 
ARL  A0.x, VGR5.x; 
SEQ  VGR7.x, VGR4, c[50].x; 
SEQ  VGR7.y, VGR4, c[50].y; 
SEQ  VGR7.z, VGR4, c[50].z; 
SEQ  VGR7.w, VGR4, c[50].w; 
DP4  VGR4, VGR7, c[A0.x+32]; 
DP4  VGR5, VGR7, c[A0.x+33]; 
 
# Compute specular power using interpolation 
SUB  VGR5, VGR5, VGR4 
MAD  VGR3, VGR5, VGR6, VGR4; 
 
# Compute light color values 
MUL  VGR5.xyz, VGR3, c[18]; 
MUL  VGR4.xyz, VGR2, c[19]; 
ADD  VGR5.xyz, VGR4, VGR5 
ADD  VOR[COL0].xyz, VGR5, c[20]; 
 
# texture coordinate 
MOV  VOR[TEX0], VIR[TEX0]; 
 

4. Implementation  

We have developed a fully synthesizable Verilog-
HDL model of the proposed graphics architecture in-
cluding vertex shader and a hardware rasterizer. The 
vertex shader consists of 230K logic gates and 280Kbit 
SRAM using 0.13um process. The capacity of display 
list buffer is 32KByte. The low power rendering engine 
integrated in our previous work [WCS*03] was applied 
as a rasterizer. For system evaluations, we designed a 
software graphics library, a subset of OpenGL, which 
utilizes the fixed-point arithmetic operations to opti-
mally use the features of implemented hardware archi-
tecture.  To manage the vertex shader such as downloads 
of vertex programs and vertex attributes, simple API 
calls are provided as OpenGL extension. After imple-
menting software test bench using synthesized gate level 
circuits, we measured the vertex processing speed and 
power consumptions. 

 

5. Results and Evaluation 

In this section, we show hardware simulation results 
focusing the processing speed and power consumption. 

In order to measure the accuracy of fixed-point 
arithmetic in vertex shading operations, we compare the 
rendered images of 3D objects using software only float-
ing-point graphics library with our hardware using 
fixed-point graphics library. In Figure 8, lit, smooth-
shaded spheres with different material properties and an 
animated 3D character are rendered to show reliability 
of the proposed vertex shader. From the results, we can 
show that under vertex-level accuracy, the maximum 
transformed distance between floating-point and fixed-
point systems is less than 0.000025 for Q12.20 fixed-
point format and 0.0002 for Q16.16 fixed-point format. 

Figure 9 shows vertex processing speed and power 
consumption in case of unlit, diffuse lit and diffuse-
specular lit polygons. For diffuse-specular lit polygons, 
full 3D geometry pipeline can be performed at a rate of 
7.2M vertices/sec with 115mW power consumption 
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including host processor, vertex shader and display list 
buffer. In other cases, the performance was improved 
with less power consumption because unnecessary 
hardware blocks such as special function unit and 
lookup table can be disabled. 

Figure 10 shows the relationship between rendered 
vertex counts and processing speed with various sizes of 
the vertex data format. The vertex processing speed was 
measured with and without using the display list buffer 
for vertex caching. To reduce the external memory 
bandwidth, vertex data in the display list buffer were 
stored as a 8 bit or 16 bit data type. In typical wireless  
applications, a 32-bit SDRAM memory running at 100 
MHz is used as the main memory, and gives a usable 
bandwdith of 200MB/s with approximately 50% of 
efficiency. We restriced the peak bandwidth requirement 

of the vertex shader to 100MB/s in order to allocate the 
remaining bandwidth for other devices. As shown in this 
figure, the vertex shader shows twice higher perfor-
mance when using the display list buffer than only data 
cache of the main processor. Moreover, the performance 
degradation is merely 10% as vertex counts are 
increased. Because we can feed vertex data stream con-
tinuously during execution of vertex program with the 
help of concurrent operations of the main processor, we 
can achieve high sustaining performance. 

With high vertex processing speed, the hardware 
vertex shader in the PC and workstation platforms pro-
vide many advanced shading functions. However they 
consume a great deal of power, more than several tens of 
watts. Therefore we should use the following perform-
ance indices to measure the performance of vertex 
shader in wireless applications taking into account the 
power consumption [WYK*02]. 

Figure 9: Processing speed and power consumption 
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Figure 10: Relationship between rendered vertex 
counts and processing speed 

Vertex
Processing

Speed
( vertices/sec )

24-byte vertex format, w/ display list buffer

32-byte vertex format, w/ display list buffer

40-byte vertex format, w/ display list buffer

48-byte vertex format, w/ display list buffer

24-byte vertex format, w/o display list buffer

32-byte vertex format, w/o display list buffer

40-byte vertex format, w/o display list buffer

48-byte vertex format, w/o display list buffer

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

1M

2M

3M

4M

5M

6M

7M

8M

Rendered Vertex Count

113



Sohn et al. / A Programmable Vertex Shader with Fixed-Point SIMD Datapath for Low Power Wireless Applications 

  © The Eurographics Association 2004. 

)mW  Shader(Vertex in n  ConsumptioPower  
) sec vertices/( Speed ProcessingVertex 

nsApplicatio sin Wireles ePerformanc ShadingVertex 

=
 

 
Figure 11 shows the performance comparison of 

proposed vertex shader with different graphics architec-
ture in terms of Kvertices/sec per milliwatt. The im-
provement is about 10 times greater than that of the 
latest graphics core with floating-point datapath for 
wireless applications [KKF*03]. In comparison with 
simple integer datapath of the conventional low power 
embedded CPU [WCS*03], it shows far higher perform-
ance improvement. 

 

6. Conclusions 
 
We have presentated the design and implementation 

of a programmable vertex shader with fixed-point SIMD 
datapth for low power wireless applications. Most 
graphics architectures for wireless applications have 
mainly focused on rasterization and texture mapping due 
to high processing requirements. In order to balance 3D 
graphics pipeline within the limited system resources, 
we used simple and efficient programmable architecture 
for vertex shading instead of using dedicated hardware 
engine with complex functions. Since main purpose of 
the proposed design is to provide high performance with 
low power consumption, we used a energy-efficient 
fixed-point SIMD datapath to exploit parallelism in 
vertex shading operations. It shows comparable image 
quality to floating-point system, while operating at 
higher clock speed with low power consumption. For 
simple program model, the proposed vertex shader is 
connected to main processor through dedicated ARM 
coprocessor interface. Moreover, using multithredaded 
architecture, it can handle vertex data stream more 
efficiently. In addition to conventional ARM 
coprocessor, our architecture can be operated as a 
programmable vertex engine and execute vertex 
program concurrently with the main processor. All 
instructions are optimized to fixed-point arithmetic. 

The architecture has been implemented in fully 
syntheiszable hardware model. Simulation results show 
that full 3D geometry pipeline can be performed at a rate 
of 7.2M vertices/sec with 115mW power consumption 
for polygons using the OpenGL lighting model. The 
improvement is about 10 times greater than that of the 
latest graphics core with floating-point datapath for 
wireless applications in terms of processing speed 
normalized by power consumption, or vertices/sec per 
milliwatt. 

In the future, we would like to enhance the fixed-
point artihmetic in vertex shading operations, and 
combine our architecture with low power programmable 
pixel shader to provide more  higher quality of rendering 
images for low power wireless applications. 
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