
Graphics Hardware (2004)
T. Akenine-Möller, M. McCool (Editors)

© The Eurographics Association 2004.

A Programmable Vertex Shader with Fixed-Point SIMD
Datapath for Low Power Wireless Applications

Ju-Ho Sohn† Ramchan Woo† Hoi-Jun Yoo‡

Semiconductor System Laboratory, Department of Electrical Engineering and Computer Science,
Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea

Abstract
The real time 3D graphics becomes one of the attractive applications for 3G wireless terminals although
their battery lifetime and memory bandwidth limit the system resources for graphics processing. Instead
of using the dedicated hardware engine with complex functions, we propose an efficient hardware archi-
tecture of low power vertex shader with programmability. Our architecture includes the following three
features: I) a fixed-point SIMD datapath to exploit parallelism in vertex processing while keeping the
power consumption low, II) a multithreaded coprocessor interface to decrease unwanted stalls between
the main processor and the vertex shader, reducing power consumption by instruction-level power man-
agement, III) a programmable vertex engine to increases the datapath throughput by concurrent opera-
tions with main processor. Simulation results show that full 3D geometry pipeline can be performed at
7.2M vertices/sec with 115mW power consumption for polygons using the OpenGL lighting model. The
improvement is about 10 times greater than that of the latest graphics core with floating-point datapath
for wireless applications in terms of processing speed normalized by power consumption, Kvertices/sec
per milliwatt.

Category and Subject Descriptors: I.3.1 [Computer Graphics]: Hardware Architecture––Graphics Proc-
essor C.1.2 [Processor Architecture]: Multiple Data Stream Architectures––Single–instruction–stream,
multiple–data–stream processor (SIMD)

1. Introduction

As the mobile electronics market increases rapidly,
3G wireless terminals such as PDAs or mobile phones
get more popular. Since these applications have the dis-
play devices, the rendering capabilities from simple two-
dimensional graphics even to the real time three-
dimensional graphics will be necessary to provide more
realistic functionalities.

For the wireless applications, the low power con-
sumption is the most important issue because they are
driven by batteries. The Advanced RISC Machines
(ARM) processor family that has the reduced instruction
set computer (RISC) architecture is most widely used as
a main platform for the wireless applications because of
its high MIPS/Watt [Cla02]. Since there are very limited
system resources in terms of computation power and
memory bandwidth, the graphics architecture should be
designed to consume as little energy as possible on the

ARM platform. Moreover, since the users hold the small
screens of wireless terminals close to their eyes, the
average eye-to-pixel angle is wider than that of a PC
system. Therefore we must provide more realistic graph-
ics images with low power consumption in wireless
terminals.

Recently, several researches have tried to increase
the mobile graphics capabilities in wireless applications.
Since the rasterization and texture mapping require more
processing complexities than the rest of operations in the
3D graphics pipeline [ODK*00], most of graphics archi-
tectures have mainly focused on the rendering pipeline
and achieved the efficient graphics performances
[AMS03][WCS*03]. However, since relatively little
attention has been given to 3D geometry operations,
now they become the performance barriers in 3D graph-
ics pipeline. The geometry units of graphics systems in
PC and workstations [LKM01][MBD*97] show high
performance while consuming much power. For wireless
applications, the general-purpose RISC processors with
simple integer datapath [WCS*03] or conventional float-
ing-point datapath [KKF*03] were used to process ver-
tex shading operations. However, the simple integer

†{sohnjuho, ural}@eeinfo.kaist.ac.kr
‡hjyoo@ee.kaist.ac.kr

107

Sohn et al. / A Programmable Vertex Shader with Fixed-Point SIMD Datapath for Low Power Wireless Applications

 © The Eurographics Association 2004.

datapath could not provide the required performance of
vertex shading. In conventional floating-point datapath,
the performance is also limited due to low operating
frequency within allowed budget of limited power
consumption.

In this paper, we propose a programmable vertex
shader for the low power wireless applications. It can fill
the gap between the flexible high performance 3D ge-
ometry systems and the low power wireless platforms
with limited system resources. The proposed hardware
architecture for low power vertex shader has three major
features:

1) a fixed-point SIMD datapath that uses an energy-
efficient fixed-point arithmetic to exploit data level
parallelism in vertex processing while keeping the
power consumption low,

2) a multithreaded ARM coprocessor interface - an
instruction extension mechanism of ARM platform,
which decreases the unwanted stalls between the main
processor and the vertex shader, and reduces power
consumption by instruction-level power management,
and

3) a programmable vertex engine that increases the
datapath throughput for streaming vertex data input by
concurrent operations with the main processor while
saving the external memory bandwidth.

This paper is organized as follows. First, the hardware

architecture of the proposed vertex shader is described,
and followed by a discussion about the program model.
Then the implementation details are presented. After that,
simulation results and evaluations are provided. Finally
conclusions are made.

2. Architecture

Figure 1 shows the system configuration of our

graphics architecture and the gray blocks indicate the
proposed vertex shader. All hardware blocks including
vertex shader are connected to the ARM10 RISC proc-
essor through the coprocessor interface, and use system
bus interfaces for external memory accesses. In this
section, the hardware architecture of the vertex shader is
described focusing the three previously mentioned fea-
tures.

2.1. Fixed-point SIMD Datapath

Most 3D graphics systems require real number rep-
resentation to support various 3D rendering algorithms.
We use fixed-point number format for real number rep-
resentation as shown in Figure 2.(a) [Kol02] instead of
using floating-point number. There are two reasons for
this. First, the hardware architecture of fixed-point
arithmetic is much simpler than that of floating-point
arithmetic because fixed-point arithmetic uses only inte-
ger datapath. Therefore the fixed-point unit can occupy
less silicon area, and it can consume less power. Second,
because fixed-point unit can operate at higher clock
speed, it can process the same task faster than floating-
point unit. Therefore, we can use less energy when ap-
plying fixed-point arithmetic in the graphics operations.
For matrix multiplication, 32-bit fixed-point hardware
consumes 17% less power than single precision floating-
point multiplier. It can also operate at 30% higher clock
frequency.

To evaluate the accuracy of the fixed-point arithme-
tic in the 3D geometry operations, the following equa-
tions can be used to decide the number of bits for frac-

Figure 1: System configuration and block diagram
of proposed vertex shader

ARM10
RISC Processor

Instruction Cache

Data Cache

Pipeline Follower

Code
Memory

Display List
Buffer

Clipping and Back-face Culling

Vertex FIFO

Triangle Setup Engine

Pixel Processor

Depth Test

Texture Mapping Te
xt

ur
e,

 fr
am

e
an

d
de

pt
h

bu
ffe

r
ca

ch
es

Input Vertex
Register File

Output Vertex
Register File

General SIMD
Register File

Vertex Shader
(Fixed-point

SIMD Datapath)

S
ys

te
m

 B
us

Coprocessor interface

Visible

Clip Code

Handshaking Signals Handshaking Signals

Figure 2: Fixed-point representation

32 22 12 02 12− 22− 32− 42−

7b 6b 5b 4b 3b 2b 1b 0b }1,0{∈ibBit index

Value

sign m-bit integer part n-bit fraction part

fraction point

31 16 15 0 31 16 15 0

A B

63 47 16 15 0

Underflow

48

Overflow
A x B

For multiplication of two 32 bit Q16.16 fixed-point numbers

Overflow when 64 bit result > (pow(2,47) - 1)

Underflow when 64 bit result < (pow(2,15) -1)

(a) Number format (example: Q4.4 format)

64 bit
intermediate

result

(b) Overflow and underflow

108

Sohn et al. / A Programmable Vertex Shader with Fixed-Point SIMD Datapath for Low Power Wireless Applications

© The Eurographics Association 2004.

tional part of Qm.n fixed-point number [HV01], where
the ‘m’ is the number of bits representing integer part
and ‘n’ is the number of bits representing fractional part.

for transformation,

for lighting,

where ‘nf’ is the number of fractional bits to get na
bits of accuracy after transformation and lighting
calculations.

The screen resolution and color depth of wireless
terminals are relatively small, for example the common
displays of today’s wireless application such as QVGA
has 320 x 240 resolution with 16-bit color depth. In this
case, 14 or 15 bits are enough for the fractional part to
get pixel level accuracy

Our architecture utilizes 128-bit wide 4-way SIMD
instructions, enabling to concurrently process up to four
32 bit fixed-point data elements in a single cycle. To
improve the usefulness in fixed-point arithmetic, status
registers are applied to indicate the overflows and under-
flows occurred in the multiplications of two fixed-point
numbers as shown in Figure 2.(b). These status registers
can be used to check errors in fixed-point arithmetic
without extra cycle penalties.

In order to enhance the dynamic range further in real
number representation, we add controlled ADD/SUB
(CAS) instruction and controlled logical shift (CLS)
instruction (Figure 3) for software emulation of floating-
point arithmetic to fixed-point SIMD instructions. After
updating negative flag in arithmetic status register by
previous instructions such as SUB, we can make CAS
instruction be a single ADD instruction or SUB instruc-
tion. We can also make CLS instruction be a single left
shift instruction or right shift instruction. These instruc-
tions can reduce the unnecessary comparison operations
in exponent alignment and normalization of floating-
point arithmetic. With floating-point emulation, our
architecture shows 160Mflops performance at 400MHz
clock speed.

2.2. Multithreaded ARM Coprocessor

The ARM architecture supports an extension of the
instruction set architecture by adding coprocessors
[Fur02]. The proposed architecture is integrated with
ARM10 RISC processor. The coprocessor interface is
used to interconnect the proposed architecture with main
processor because of the following reasons

▪ Since the coprocessor operates in lock step with core
pipeline of the main processor, it can avoid a complex
synchronization and provide a single context of control.
▪ The coprocessors have the direct signal paths from

the main processor. They don’t need the bus arbitrations
for hardware accesses contrary to conventional hardware
accelerators, which use the shared system bus. Therefore,
coprocessor interface can reduce the unwanted stalls
between main processor and hardware accelerators.
▪ Since the data cache of main processor can be

shared to store graphics primitives as well, additional
memories are not necessary to store vertex data.

To achieve high graphics performance at low power
consumption, we add two additional features to the con-
ventional coprocessor. First, a multithread architecture is
proposed to enable the stream processing of vertex data.
For this, three independently accessible register files are
used for storing input vertex data, output vertex data and
temporary results. The vertex shader processes polygon
data stored in input vertex register file, and generates the
shaded vertex output to the output vertex register file.
The general purpose SIMD register file is used to hold
the temporary results. Second, the coprocessor can be
activated only when it is required on an instruction-by-
instruction basis. If the current instruction is not a valid

⎥
⎥

⎤
⎢
⎢

⎡
+++=)

eye vertex toscene of distance
eye from planefar of distance1(log3nn 2af

9nor 8nn aaf ++=

Figure 3: Special instructions for floating-point
emulation

SUB

N == 0

ADD SUB

Update Negative (N) Flag

Yes
No

(a) Controlled Add/Sub (CAS)

CAS

SUB

N == 0

Right shift Left shift

Yes
No

(b) Controlled Left shift/Right shift (CLS)

CLS

Previous Arithmetic
Instruction

Update Negative (N) Flag

Figure 4: Instruction pipeline and clock gating

E1 E2 E3 E4 WDIF

E M WDIF

E M WDIF

E M WDIF

E M WDIF

E1 E2 E3 E4 WDIF

Instruction: An

Instruction: Vn+1

Instruction: An+2

Instruction: Vn+3

Instruction: Vn+1

Instruction: Vn+3

1clk

Instruction Valid
Signal

Driven in early stage
of pipeline

Clock is not supplied to SIMD
arithmetic units in datapath

Pipeline of main processor

Pipeline of vertex shader

FetchF: IssueI: DecodeD:
ExecuteE: MemoryM: WritebackW:

ARM instructionsAn:
Vertex shader instructionsVn:

Clock

109

Sohn et al. / A Programmable Vertex Shader with Fixed-Point SIMD Datapath for Low Power Wireless Applications

 © The Eurographics Association 2004.

coprocessor instruction, clock signal is not supplied to
the fixed-point SIMD arithmetic units in datapath. As
shown in Figure 4, the instruction valid signal driven in
the early stage of the main processor pipeline disables
the unnecessary hardware blocks of the coprocessor
datapath to reduce power consumption.

2.3. Programmable Vertex Engine

In general, the ARM coprocessor cannot be operated
without instruction issuing from the main processor.
Therefore, the datapath of the main processor is stalled
while the coprocessor executes instructions. Because it
leads to the performance degradation of main processor
when processing the streaming vertex data, we improve
the throughput of main processor and vertex shader by
allowing coprocessor to execute the vertex program
independently.

Figure 5 shows the internal architecture of the vertex
engine. After downloading the vertex program into the
internal code memory via the coprocessor interface, the
vertex shader starts executing each instruction running
free from main processor. As previously mentioned, the
vertex shader is a multithreaded coprocessor with fixed-
point SIMD datapath. The input vertex register file that
is used to hold the vertex attributes such as position and
normal vector is fed into the fixed-point SIMD datapath.
The vector arithmetic unit is responsible for all
arithmetic operations such as addition and multiplication,
and the special function unit is responsible for reciprocal
(RCP) and reciprocal square root (RSQ). Most of the
operations are performed as the 32 bit fixed-point
numbers, and achieve a single cycle pipelined
throughput. The constants such as transformation matrix,
lighting parameters and lookup table entries are stored in

the display list buffer and temporary results are stored in
the general purpose SIMD register file. The shaded
vertex output is transformed into one of the ouput vertex
register files. There are three output vertex reigter files
for caching of vertex data in the primitive assembly and
only one of them is accessible in the vertex program. To
save the silicon area, only one input vector operand can
be swizzled aribitrarily in the SIMD datapath and all the
output writes can be controlled by component-wise write
mask bits

In the vertex shader, we have the display list buffer
to store graphics primitives, reducing the traffic on
external memory I/O. Also, the display list buffer can be
shared to hold vertex constants at the same time for
design simplicity of hardware. To enhance the efficiency
of addressing, we have two integer address registers for
indexed display list buffer reads. In addtion, the display
list buffer has the following two features.

▪ Auto increment and decrement addressing modes:
the address register can be updated automatically after
indexed display list buffer reads, which is useful to man-
age the vertex streams.

▪ 8 bit / 16 bit unpack with shuffling of vector com-
ponents: For geometry compression, the 8 bit or 16 bit
read data from the display list buffer can be automati-
cally sign-extended to the full 32 bit fixed-point num-
bers, which can be used as the delta difference between
one vertex and the next vertex [Dee95].

3. Program Model

In this section, we will describe the program model

of the proposed vertex shader including the processor
operating states and the instruction set architecture.

3.1. Dual Personality

The main purpose of our design is to use the simple

program model through ARM coprocessor interface,
while improving the datapath performance with low
power consumption for vertex data streams. From the
programmer’s point of view, the vertex shader can be in
one of two states as shown in Figure 6.

1) Tightly coupled coprocessor (TCC): All instruc-

Inst. 0

Inst. 2

Inst. 1

Inst. 3

ARM
Program

Vertex
Program

ARM
Program

Main
Processor

Vertex
Shader

Main
Processor

Vertex
Shader

(a) Tightly coupled coprocessor (b) Parallel processor

Figure 6: Processor operating states Figure 5: Internal architecture of vertex engine

Vector
Arithmetic

Unit

Code
Memory

Display List
Buffer

Input Vertex
Register File

Output
Vertex

Register
File 0

General SIMD
Register File

Special
Function

Unit

Output
Vertex

Register
File 1

Output
Vertex

Register
File 2

Write Mask

Write Mask Write Mask Write Mask

SWZ

opA opB opC

AR0 AR1

Instruction
Decode & Control

Unit

Coprocessor interface

110

Sohn et al. / A Programmable Vertex Shader with Fixed-Point SIMD Datapath for Low Power Wireless Applications

© The Eurographics Association 2004.

tions of the vertex shader are issued in the instruction
stream of the main processor as extended instructions
and, they are executed in lock step with main pipeline.

2) Parallel processor (PP): In this state, vertex shader
can process the vertex program stored in the internal
code memory without instruction issues from main
processor. The vertex shader can achieve the maximum
throughput of datapath because it can operate concur-
rently with main processor [Gan98]. The main processor
reads the vertex attributes in the main memory and feeds
them into the vertex shader while vertex program is
executed. To maintain the communication protocol of
the ARM coprocessor interface, the vertex shader drives
the coprocessor busy signals to the main processor, lead-
ing next coprocessor instruction to busy-wait loop for
system synchronization.

3.2. Instruction Set

We use two kinds of instruction set architectures for
each processor operating state. The instruction set in
TCC state contains all data processing and transfer in-
structions for vertex shader. In PP state the instruction
set consists of 20 operations, which are the modified
subset of the previous programmable vertex engine
[LKM01]. Table 1 shows the instruction set of vertex
program that can be executed in PP state.

3.2.1 Control flow instructions

In TCC state, the control flow instructions such as
branch and return are managed by the main processor
and the vertex shader executes only the extended SIMD
arithmetic instructions. However all vertex shader
instructions are conditionally executed to maximize
execution throughput. They affect on the memory and
registers only if the arithmetic flags (negative, zero,

carry out and overflow) satisfy a condition specified in
the instruction. When implementing the fixed function
pipeline of graphics library such as OpenGL which is
controlled by global states, the state checking, vertex
shading path selection, homogeneous clip space
operations and back face culling are handled in TCC
state. The remaining code segments for actual vertex
shading operations can be executed without state
checking. These operations are carried out in the vertex
program of PP state. It supports the vertex transform
paths without branching for simplicity and efficiency of
hardware architecture. Even if the control flow
instructions are not supported in PP state, simple
if/then/else statement is still possible through SLT, SGE
and SEQ instructions.

3.2.2 Fixed-point SIMD arithmetic instructions
To save the system resources, we make the

datapath simple and efficient without complex hardware
blocks. All arithmetic operations including RCP and
RSQ are executed on the fixed-point numbers that can
have any precisions, using only low power interger
arithmetic units. They are also fully pipelined and
bypassed to forward the data to the different stage of
pipeline of correct instructions.

Since the multiplication equivalent instructions
consume most of time in vertex shading operations, we
make the throughput of MUL and MAD be a single
cycle, and support dot products for coding convenience.
Moreover we add TRFM instruction to enhance the
performance of the vertex transformation in

Table 1: Instruction set of vertex program

Opcode

MUL

DP3

DP4

MAD

ADD

TRFM

SUB

MOV

RCP

RSQ

MIN

SLT

SGE

MAX

SEQ

ZERO

ARL

END

LSL

ASR

Reciprocal

Reciprocal square root

Full name

Multiply

Multiply and add

3 term dot product

4 term dot product

Transform

Addition

Subtraction

Move

Minimum

Maximum

Set on less than

Set on grater or equal

Set on equal

Logical shift left

Arithmetic shift right

Set zero

Address register load

Vertex program end

Description

Vector Vector

Vector Vector

Vector Replicated scalar

Vector Replicated scalar

Vector Vector

Vector Vector

Vector Vector

Vector Vector

Scalar Replicated scalar

Scalar Replicated scalar

Vector Vector

Vector Vector

Vector Vector

Vector Vector

Vector Vector

Vector Integer Vector

Vector Integer Vector

Vector

Vector Scalar integer

Miscellaneous

Throughput

1

1

2

2

4

1

1

1

3

5

1

1

1

1

1

1

1

1

1

2

Latency

4

4

5

5

7

1

1

1

6

8

1

1

1

1

1

1

1

1

1

2

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

Figure 7: TRFM instruction

m4
m5
m6
m7

m8
m9
m10
m11

m12
m13
m14
m15

V .x
V .y
V .z
V.w

m0
m1
m2
m3

m4
m5
m6
m7

m12
m13
m14
m15

m8
m9
m10
m11

m0
m1
m2
m3

(a) Vertex transformation

broadcasted vector elements

V.x
V.x
V.x
V.x

V.y
V.y
V.y
V.y

V.w
V.w
V.w
V.w

V.z
V.z
V.z
V.z

MUL x MAD y MAD z MAD w

E4E3E2E1

E4E3E2E1

E4E3E2E1

E4E3E2E1

1clk

DIF

W

MUL x

MAD y

MAD z

MAD w

: Internal Bypass of Intermediate Results

First 32x16 integer multiplierE1:

4 cycle
throughput

bypass of
intermediate low 32 bit

values

bypass of
intermediate high 32 bit

values

Second 32x16 integer multiplierE2:

Carry save adder and shift for low 32 bit part
of final fixed-point result

E3:

Carry save adder and shift for high 32 bit part
of final fixed-point result

E4:

(b) Internal bypass network

111

Sohn et al. / A Programmable Vertex Shader with Fixed-Point SIMD Datapath for Low Power Wireless Applications

 © The Eurographics Association 2004.

homogeneous coordinates. Although the latency of
MUL and MAD are four cycles, TRFM instruction can
calculate the vertex transform-ation at every four cycles
with the help of broadcasting of vector elements and
internal bypass network of intermediate values as shown
in Figure 7.

For design simplicity, we remove the complex
functions such as the logarithmic, exponential and
specular power functions, and rather the table look-up is
used for these functions. The integer shift instructions of
fixed-point numbers are added in order to extract bit
fields for index calculations in the lookup table. After
shift operations of vertex specific index, the ARL
instruction can allow an offset into the lookup table.

The following vertex program implements the vertex
transformation and full Phong shading. It uses OpenGL
lighting equations assuming infinite light and viewpoint
positions. To calculate the specular power function, we
use the lookup table of 64 entries which store the
specular coefficients for given shininess value. After
calculating dot product of normal vector and the Blinn
halfway vector, we use the integer shift instructions for
offset values. After the rearrangements of the
instructions for compiler optimization, the proposed
hardware running at 400MHz can process these vertices
at a rate of 7.2M vertex/sec including view frustum clip
check, perspective division and viewport transform.

Vertex Transformation and OpenGL Lighting

c[0-3] = modelview matrix (column-wise)
c[4-7] = modelview inverse transpose (column-wise)
c[8-11] = modelview projection matrix (column-wise)
c[16] = light position
c[17] = blinn halfway vector
c[18] = precomputed specular light * specular mat.
c[19] = precomputed diffuse light * diffuse mat.
c[20] = precomputed ambient light * ambient mat.
c[32-47] = 64 entries lookup table for specular power (column-wise)
c[48] = 16th, 32th, 48th and 64th entries of lookup table
c[49].x = fraction bit length of fixed-point format
c[49].y = fraction bit length - 2
c[49].z = fraction bit length - 6
c[49].w = fraction bit length + 4
c[50] = (0, 1, 2, 3) in integer format

Vertex transformation to eye space
TRFM VGR0.xyz, VIR[OPOS], c[0];

Normal vector transform to eye space
TRFM VGR1.xyz, VIR[NRML], c[4];

Vertex transformation to clip space
TRFM VOR[HPOS], VIR[OPOS], c[8];

Compute normalized light direction
SUB VGR0.xyz, VGR0, c[16];
DP3 VGR0.w, VGR0, VGR0;
RSQ VGR0.w, VGR0.w;
MUL VGR0.xyz, VGR0, VGR0.w;

Compute N.L and N.H
DP3 VGR2, VGR1, VGR0;
DP3 VGR3, VGR1, c[17];

Index calculation of lookup table for specular power function
ASR VGR4, VGR3, c[49].y;
ASR VGR5, VGR3, c[49].z;
LSL VGR6, VGR5, c[49].z;
SUB VGR6, VGR3, VGR6;
LSL VGR5, VGR5, c[49].x;
LSL VGR7, VGR4, c[49].w;
SUB VGR5, VGR5, VGR7;

table look-up
ARL A0.x, VGR5.x;
SEQ VGR7.x, VGR4, c[50].x;
SEQ VGR7.y, VGR4, c[50].y;
SEQ VGR7.z, VGR4, c[50].z;
SEQ VGR7.w, VGR4, c[50].w;
DP4 VGR4, VGR7, c[A0.x+32];
DP4 VGR5, VGR7, c[A0.x+33];

Compute specular power using interpolation
SUB VGR5, VGR5, VGR4
MAD VGR3, VGR5, VGR6, VGR4;

Compute light color values
MUL VGR5.xyz, VGR3, c[18];
MUL VGR4.xyz, VGR2, c[19];
ADD VGR5.xyz, VGR4, VGR5
ADD VOR[COL0].xyz, VGR5, c[20];

texture coordinate
MOV VOR[TEX0], VIR[TEX0];

4. Implementation

We have developed a fully synthesizable Verilog-
HDL model of the proposed graphics architecture in-
cluding vertex shader and a hardware rasterizer. The
vertex shader consists of 230K logic gates and 280Kbit
SRAM using 0.13um process. The capacity of display
list buffer is 32KByte. The low power rendering engine
integrated in our previous work [WCS*03] was applied
as a rasterizer. For system evaluations, we designed a
software graphics library, a subset of OpenGL, which
utilizes the fixed-point arithmetic operations to opti-
mally use the features of implemented hardware archi-
tecture. To manage the vertex shader such as downloads
of vertex programs and vertex attributes, simple API
calls are provided as OpenGL extension. After imple-
menting software test bench using synthesized gate level
circuits, we measured the vertex processing speed and
power consumptions.

5. Results and Evaluation

In this section, we show hardware simulation results
focusing the processing speed and power consumption.

In order to measure the accuracy of fixed-point
arithmetic in vertex shading operations, we compare the
rendered images of 3D objects using software only float-
ing-point graphics library with our hardware using
fixed-point graphics library. In Figure 8, lit, smooth-
shaded spheres with different material properties and an
animated 3D character are rendered to show reliability
of the proposed vertex shader. From the results, we can
show that under vertex-level accuracy, the maximum
transformed distance between floating-point and fixed-
point systems is less than 0.000025 for Q12.20 fixed-
point format and 0.0002 for Q16.16 fixed-point format.

Figure 9 shows vertex processing speed and power
consumption in case of unlit, diffuse lit and diffuse-
specular lit polygons. For diffuse-specular lit polygons,
full 3D geometry pipeline can be performed at a rate of
7.2M vertices/sec with 115mW power consumption

112

Sohn et al. / A Programmable Vertex Shader with Fixed-Point SIMD Datapath for Low Power Wireless Applications

© The Eurographics Association 2004.

including host processor, vertex shader and display list
buffer. In other cases, the performance was improved
with less power consumption because unnecessary
hardware blocks such as special function unit and
lookup table can be disabled.

Figure 10 shows the relationship between rendered
vertex counts and processing speed with various sizes of
the vertex data format. The vertex processing speed was
measured with and without using the display list buffer
for vertex caching. To reduce the external memory
bandwidth, vertex data in the display list buffer were
stored as a 8 bit or 16 bit data type. In typical wireless
applications, a 32-bit SDRAM memory running at 100
MHz is used as the main memory, and gives a usable
bandwdith of 200MB/s with approximately 50% of
efficiency. We restriced the peak bandwidth requirement

of the vertex shader to 100MB/s in order to allocate the
remaining bandwidth for other devices. As shown in this
figure, the vertex shader shows twice higher perfor-
mance when using the display list buffer than only data
cache of the main processor. Moreover, the performance
degradation is merely 10% as vertex counts are
increased. Because we can feed vertex data stream con-
tinuously during execution of vertex program with the
help of concurrent operations of the main processor, we
can achieve high sustaining performance.

With high vertex processing speed, the hardware
vertex shader in the PC and workstation platforms pro-
vide many advanced shading functions. However they
consume a great deal of power, more than several tens of
watts. Therefore we should use the following perform-
ance indices to measure the performance of vertex
shader in wireless applications taking into account the
power consumption [WYK*02].

Figure 9: Processing speed and power consumption

20M

11.3M

7.2M

Unlighted Diffuse
Lighted

Diffuse and Specular
Lighted

92mW
108mW 115mW

Power
Consumption

Vertex
Processing

Speed
(vertices/sec)

10M

20M

15M

5M

Figure 11: Performance comparison

Commodity
PC

Graphics

Performance
Index

(vertices/sec
per mW)

10K

20K

30K

40K

50K

60K

70K

Integer
CPU

[WCS*03]

Floating
SIMD

[KKF*03]

Fixed-point
SIMD

[This Work]

10 times
improvement

Figure 8: Fixed-point vertex shading of 3D objects
(spheres: 5068 vertices, horse: 6798 vertices)

(a) floating-point (sphere) (b) fixed-point Q16.16 (sphere)

(c) floating-point (horse) (d) fixed-point Q12.20 (horse)

Figure 10: Relationship between rendered vertex
counts and processing speed

Vertex
Processing

Speed
(vertices/sec)

24-byte vertex format, w/ display list buffer

32-byte vertex format, w/ display list buffer

40-byte vertex format, w/ display list buffer

48-byte vertex format, w/ display list buffer

24-byte vertex format, w/o display list buffer

32-byte vertex format, w/o display list buffer

40-byte vertex format, w/o display list buffer

48-byte vertex format, w/o display list buffer

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

1M

2M

3M

4M

5M

6M

7M

8M

Rendered Vertex Count

113

Sohn et al. / A Programmable Vertex Shader with Fixed-Point SIMD Datapath for Low Power Wireless Applications

 © The Eurographics Association 2004.

)mW Shader(Vertex in n ConsumptioPower
) sec vertices/(Speed ProcessingVertex

nsApplicatio sin Wireles ePerformanc ShadingVertex

=

Figure 11 shows the performance comparison of

proposed vertex shader with different graphics architec-
ture in terms of Kvertices/sec per milliwatt. The im-
provement is about 10 times greater than that of the
latest graphics core with floating-point datapath for
wireless applications [KKF*03]. In comparison with
simple integer datapath of the conventional low power
embedded CPU [WCS*03], it shows far higher perform-
ance improvement.

6. Conclusions

We have presentated the design and implementation

of a programmable vertex shader with fixed-point SIMD
datapth for low power wireless applications. Most
graphics architectures for wireless applications have
mainly focused on rasterization and texture mapping due
to high processing requirements. In order to balance 3D
graphics pipeline within the limited system resources,
we used simple and efficient programmable architecture
for vertex shading instead of using dedicated hardware
engine with complex functions. Since main purpose of
the proposed design is to provide high performance with
low power consumption, we used a energy-efficient
fixed-point SIMD datapath to exploit parallelism in
vertex shading operations. It shows comparable image
quality to floating-point system, while operating at
higher clock speed with low power consumption. For
simple program model, the proposed vertex shader is
connected to main processor through dedicated ARM
coprocessor interface. Moreover, using multithredaded
architecture, it can handle vertex data stream more
efficiently. In addition to conventional ARM
coprocessor, our architecture can be operated as a
programmable vertex engine and execute vertex
program concurrently with the main processor. All
instructions are optimized to fixed-point arithmetic.

The architecture has been implemented in fully
syntheiszable hardware model. Simulation results show
that full 3D geometry pipeline can be performed at a rate
of 7.2M vertices/sec with 115mW power consumption
for polygons using the OpenGL lighting model. The
improvement is about 10 times greater than that of the
latest graphics core with floating-point datapath for
wireless applications in terms of processing speed
normalized by power consumption, or vertices/sec per
milliwatt.

In the future, we would like to enhance the fixed-
point artihmetic in vertex shading operations, and
combine our architecture with low power programmable
pixel shader to provide more higher quality of rendering
images for low power wireless applications.

References

[AMS03] Akenine-Möller T., Ström J.: Graphics for
the masses: A hardware rasterization
architecture for mobile phones. In Proc.
SIGGRAPH 2003, pp. 801-808, July, 2003

[Cla02] Clark D.: Mobile processors begin to grow
up. IEEE Computer, vol. 35, Issue 3, pp. 22-
24, March, 2002

[Dee95] Deering M.: Geometry compression. In Proc.
SIGGRAPH 95, pp. 13-20, July, 1995

[Fur02] Furber S.: ARM: System-on-chip architec-
ture. 2nd edition Addison-Wesley Press,
2000

[Gan98] Gandhi P.: SA1500:A 300MHz RISC CPU
with attahced media processor. In Proc. Hot
Chips 10, August, 1998

[HV01] Hao X., Varshney A.: Variable-precision
rendering. In Proc. the 2001 Symp. on
Interative 3D Graphics, pp. 149-158, 2001

[KKF*03] Kameyama M., Kato Y., Fujimoto H.,
Negishi H., Kodama Y., Inoue Y., Kawai
H.: 3D graphics LSI core for mobile phone
–Z3D. In Proc. SIGGRAPH/Eurogrphics
Workshop on Graphics Hardware 2003,
pp.60-67, August, 2003

[Kol02] Kolli G. K.: 3D graphics optimization for
ARM architecture. presented at the Game
Developer Conf., San Jose, CA. 2002

[LKM01] Lindholm E., Kilgard M., Moreton H.: A
user-programmable vertex engine. In Proc.
SIGGRAPH 2001, pp. 149-158, August,
2001

[MBD*97] Montrym, J. S., Baum D. R., Dignam D. L.,
Migdal C. J.: Infinite Reality: A Real-Time
Graphics System. In Proc. SIGGRAPH
1997, pp. 293-302, August, 1997

[ODK*00] Owens J. D., Dally W. J., Kapasi U. J.,
Rixner S., Mattson P., Mowery B.: Polygon
rendering on a stream architecture. In Proc.
SIGGRAPH/Eurographics Workshop on
Graphics Hardware 2000, pp. 23-32,
August, 2000

[WCS*03] Woo R., Choi S., Sohn J., Song S., Bae Y.,
Yoo H.: A low power and high performance
2D/3D graphics accelerator for mobile
multimedia applications. In Proc. Hot Chips
15, August, 2003

[WYK*02] Woo R., Yoon C., Kook J., Lee S., Yoo H.:
A 120mW 3D rendering engine with a 6-
Mb embedded DRAM and 3.2 GB/s run-
time reconfigurable bus for PDA chip. IEEE
J. of Solid-State Circuits, vol. 3, No. 10,
pp.1352-1355, October, 2002

114

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

