A 51mW 1.6GHz On-Chip Network for Low Power Heterogeneous SoC Platform

Kangmin Lee, Se-Joong Lee, Sung-Eun Kim, Hye-Mi Choi, Donghyun Kim, Sunyoung Kim, Min-Wuk Lee, Hoi-Jun Yoo

Semiconductor System Lab. Korea Advanced Institute of Science and Technology

Outline

Motivation

On-Chip Network Architecture

- Overall architecture
- Features & protocol

Low-Power Techniques

- Small-swing global link
- Crossbar partial activation
- Serial-link encoding
- Frequency scaling
- Implementation Results
- Conclusion

Motivation

Communications Problems in SoC

- Bandwidth bottleneck on a shared-bus
- Complicated arbiter and global interconnections
- Difficulties in global clock synchronization

(1/3)

Motivation

(2/3)

Motivation

Previous On-Chip Networks

• Designs not optimized for power, only for performance

This Work

- → Low-Power On-Chip Network Implementation
- → 51mW @ 11.2GB/s

(3/3)

Comparison of Chip Implementation

	ISSCC 2003	This work
Generation	1st	2nd
Process Technology	0.35µm CMOS	0.18µm CMOS
Topology	1-level of Star	2-levels of Star
Aggregate Bandwidth	6.4GB/s	11.2GB/s
Power Consumption	264mW	51mW (@full BW)
Power/Bandwidth	41 mW/GB/s	4.6 mW/GB/s
Integrated IPs	1kB SRAM Off-chip Gateway	32bit RISC x 2 FPGA (64-LE) 8kB SRAM x 2 Off-chip Gateway
Low-Power Techniques	Х	4 major techniques

Architecture Overview

Prototype for Heterogeneous SoC Platform

Architectural Features

x10 Serialization & Speed-Up

- → Reduces network area
- \rightarrow Increases network bandwidth

Plesiochronous Comm. by source synchronous scheme

 Flow Control by 1-bit back-pressure

(1/2)

Architectural Features

Protocol

- Burst packet operation (BL=1,2,4,8)
- Prioritized packet \rightarrow 2-level of QoS

Crossbar Switch

- Cut-through switching @ intra-cluster packets
 → Reduces Latency
- Store & Forward switching @ inter-cluster packets
 → Increases Throughput
- Deterministic Source Routing
 → Simple Lookup H/W Implementation
- Round-Robin Scheduler \rightarrow Fair arbitration

Low-Power Techniques: Preview

- (1) Low-swing Differential Signaling on Global Links
- (2) Crossbar Partial Activation Technique
- (3) Serial-Link Encoding Technique
- (4) Operating Frequency Scaling

Low-Swing Global Link : Low Power Technique (1)

(1/2)

Power reduciton ~ V²

- 5mm long link
- Differential wires

Transmitter

- Overdriving with 0.6V supply
- PMOS inputs for low-voltage
- Clocked with Strobe

Low-Swing Global Link : Low Power Technique (1) (2/2)

- No area-consuming Repeaters
- Differential signaling increases Noise Immunity
- Energy ~ 0.35pJ/bit
 - : 1/3 the power of a full-swing repeated link

Crossbar Partial Activation

: Low Power Technique (2)

Conventional Crossbar Fabric

Waste of Power due to Large Load on the lines
 → Avoid the unnecessary load!

(1/3)

Crossbar Partial Activation : Low Power Technique (2)

Proposed Technique: Split into Smaller Tiles

(2/3)

Crossbar Partial Activation : Low Power Technique (2)

(3/3)

Power Saving @ 7x7 Crossbar

Serial Link Encoding

: Low Power Technique (3)

Serialization increases transitions on wires!

Goal: Reduce transitions on serial link
 → Low-Power Serial Link Encoding

(1/3)

Serial Link Encoding : Low Power Technique (3)

(2/3)

SILENT: Serial Link Encoding Technique

Serial Link Encoding : Low Power Technique (3)

(3/3)

Frequency Scaling : Low Power Technique (4)

 Operation Frequencies are scalable according to applications and power modes

Implementation Results

The low-power OCN-based SoC platform

- \square 0.18 μm 6M CMOS Tech.
- □ 5mm x 5mm
- Power Supply
 - 1.6V: Logic/Analog
 - 3.3V: I/O
- **OCN Power Consumption**
 - Less than 51mW
- Aggregate Bandwidth
 - 11.2GB/s
- □ Various IPs for Multimedia App.
 - 32b µP x 2 (@ 100MHz)
 - FPGA (64LE)
 - 64kb SRAM x 2
 - Off-chip Gateway

Overall OCN Power Reduction

Conclusion

- A Low-Power On-Chip Network for Heterogeneous SoC Platform
 - Hierarchical Star Topology
 - Low-Power Techniques save 43% overall network power.
 - Low-swing global link
 - Crossbar partial activation
 - Serial-link encoding
 - Frequency scaling
 - 51mW, 11.2GB/s Bandwidth
- Various IPs for Multimedia Applications
 - µP x 2 + FPGA + Memory + Off-chip gateway

Topology Supplementary for Q&A

■ Cluster based Hierarchy reduces # of global links
 → Power Saving by Half

Flat Star-topology

Hierarchical Cluster-based Star-topology

Low-Swing Global Link

Overall Power Reduction

Overall Power Consumption Supplementary for Q&A

