

Arbitration Latency Analysis of the Shared Channel Architecture for High

Performance Multi-Master SoC

Jisuhn Suh, Hoi-Jun Yoo
Department of Electrical Engineering and Computer Science,

Korea Advanced Institute of Science and Technology,
Guseong-dong, Yuseong-gu, Daejeon, 305-701, Republic of Korea

Email : jissuh@sipac.org, hjyoo@kaist.ac.kr

Abstract

We propose new analysis method to estimate the traffic
performance of communication channel for system-on-chip
(SoC). We define the channel utilization ratio, and we
analyze the traffic performance of multi-master system-on-
chip on shared channel architecture by measure of the
arbitration latency. This method is efficient to evaluate the
traffic characteristics of the shared channel architecture. And
this results offer the methods to optimize the parameter of the
components to achieve high performance channel.

To verify the efficiency of this method, we experiment the
latency of single shared channel architecture by various
conditions of components composing SoC. We simulated the
effect of number of masters and 2 types of arbitration
algorithm by using defined channel utilization ratio. In this
analysis, it is found that the arbitration latency increases with
the number of masters and channel utilization ratio. The
arbitration algorithm affects the arbitration latency according
to the number of masters. The throughput of data transaction
is proportional to channel utilization ratio.

1. Introduction

System-on-chip is getting more complex and requires more
multi-processor architecture. However the capability for SoC
design not increases as we expect. The one method to
improve the capability is platform-based design. The central
technology of platform is the communication channel
architecture. Shared channel architectures have been widely
used as communication channel of IP-based SoC. For
example, the AMBA and CoreConnect bus are typical shared
channel architecture. Shared channel is a bundle of data,
address, control lines that are commonly shared by many IPs.
The advantages of shared channel architecture are relatively
simple controllers and small area because of uncomplicated
architecture than point-to-point or network types of channel.
However the demerit of shared channel is to have low
performance because of relatively un-parallel processing than
other types. Therefore the shared channel architecture has
reached the limit as more complex of SoC functions and the

increase of number of masters. To overcome this obstacle,
various architectures are proposed such as multi-layer bus,
segmented bus and network architecture [1, 2].

A general architecture for multi-master SoC on the shared
channel architecture is shown in Figure 1. The components of
this architecture have n masters, m slaves and l channels.
Master is a processing element that gives a command to the
other processing element for sending or receiving a data.
Slave is a processing element that receives command from
masters and responds to the command. Channel is a route of
data and control signal for interconnection between masters
and slaves.

M1

Mn

CH1
S1

Sm

CA CT CS

CHk

M1

Mn

CH1
S1

Sm

CA CT CS

CHk

Figure 1. General architecture for multi-master SoC that
has n masters, m slaves and k channels

A channel is composed of arbiters for controlling the
channel contention among masters, an address decoder for
decoding destination, and routes for the data passing.

The performance of a SoC can estimate by analyzing the
communication channel architecture. And also the
performance of SoC can be improved by adjusting or
changing the parameters or components based on analysis of
the communication architecture. Therefore the analysis of
communication channel traffic is very important. And various
methods to analyze the communication channel architecture
have been reported for a long time [3, 4, 5]. The previous
methods analyzed the performance in the respect of total
system such as execution time or total throughput. Therefore
the previous methods have made the conclusion that the
characteristics of components composing SoC depend on
applications. However because how to use the components

mailto:jissuh@sipac.org

can determine the performance of a SoC, more detail analysis
about the effect of each components is required. For example,
arbitration algorithm was compared with other algorithms by
performance metrics of bandwidth and latency, however the
analysis how the arbitration algorithms affect directly to the
performance of SoC was absent. Just it is reported that
arbitration algorithm is closely depends on its application [6,
7]. It is required more analytical evaluation for arbitration
algorithms because of increasing of number of masters. The
mapping algorithms were evaluated by the comparison of the
execution time [5], but the analysis how much the various
types of channel architectures directly affect to the
performance was not considered. And also it’s required how
many masters can be mapping to the single shared channel
without performance degradation.

2. Proposed analysis method

We propose the analysis method to concentrate on channel

utilization and arbitration latency to analyze the shared
channel architecture. The data transaction between masters
and slaves starts from a request by a master. An arbiter
receives request signals from masters and selects one master
to use channel by priority policy.
The completion time of data transaction through channel is

defined as the time from request to slave access. In Figure 1,
the data completion time (CC) is the sum of arbitration time
(CA), data transmission time through routes (CT), and access
time of slave (CS). Here, we use clock cycle as unit of time.

 CC = CA + CT + CS
 CA: arbitration latency which is affected by contention of

masters
 CT: data transmission time which is affected by operation

type, transaction size and channel width
 CS: slave access time which is affected by latency of

slave and conditions of input/output

CT and CS can be estimated by parameters of components

composing system. As a system have more masters, the
probability of contention increases. Therefore the arbitration
latency increases also. The arbitration latency (CA) directly
effect to the latency of transaction and the performance of
system. CA is good parameter to evaluate the system
performance by channel traffic.
However it is hard to estimate the CA because it is hard to

estimate the contention conditions for the shared channel. We
analyze the CA with CT and CS. We define CTS as the sum
of CT and CS. The CTS can be calculated by components of
system and operation conditions. And this value affects the
channel utilization.
The timing diagram example of data transaction occurred

between master 1 and slave 1 is shown in Figure 2. CR1 and
CR2 are the request cycle times from master 1. This value
means how often master request to use channel for data
transaction. The less CR, the faster operation is required.

CTSwrite and CTSread are transmission time including slave
access time for write and read operation respectively. This
means the time means that channel is in use.

CTSwrite

CR1

CTSread

CR2

M1 S1

CTSwrite

CR1

CTSread

CR2

M1 S1

Figure 2. Timing diagram of request cycle time and
transmission time at the channel for transaction data
from master 1 to slave 1

 CTSread: channel transmission time including slave
access time by read operation

 CTSwrite: channel transmission time including slave
access time by write operation

 CTSavg: average channel transmission time
 CRavg: average request interval time

 Channel utilization is the number of cycles that the channel
was in use divided by the total cycles of running. We define
the channel utilization ratio (CUR) of a master as average
channel transmission time (CTSavg) divided by average
request interval time (CRavg).
If a SoC has n masters, m slaves and k channels, CUR of

channel k can calculate as below.

▪CUR between Master n and Slave m :
 CURnm = CTSnm/CRnm
▪CTS of master n :

 CTSn = , where j : slave ID ∑
=

m

j
j

1
nCT

▪CR of master n :

 CRn = ∑
=

m

j
j

1
nCR , where j : slave ID

▪CUR of channel k :

 CURk = , where i : master ID)CR/(CTS
1

i

m

i
i∑

=

CUR of multi-master and multi-slave is the sum of CURi of
all masters. Example, if SoC have 2 masters, 2 slaves and 1
channel, then we have 4 CURs, CUR11, CUR12, CUR21,
CUR22. Therefore, total CUR is sum of them, CUR = CUR11
+ CUR12 + CUR21 + CUR22. The maximum of CUR is the
number of channels. It means full channel utilization.
To evaluate the efficiency of CUR for estimating the system

performance, we measure the arbitration latency, CA by
simulation.
The throughput of a channel is proportional to CUR. The

slope of throughput, α, is affected by channel transmission
time, CT. If CT is low, total throughput (THPtot) is high.

3. Simulation

3.1. Simulation environments

To evaluate the CA according to the CUR, we simulate the
multi-master SoC with VisualElite from Summit Design and
ModelSim from Mentor. Masters and channel are modeled by
c++ code, and memory is modeled by VHDL code. The
VisualElite provides co-simulation environment for c++ and
VHDL.
The simulation conditions are as follows.

 ▪arbitration algorithm:
 ▫round-ring arbiter (default : 1 clock cycle latency)
 ▫fair arbiter (default : 1 clock cycle latency)
 ▪number of slave: 1 (memory, latency 2 or 5)
 ▪number of channel: 1 (shared bus)
 ▪channel width: 32bits
 ▪request cycles distribution: Gaussian (standard deviation:

30% of mean)
 ▪burst length: 4
 ▪number of masters: 2 ~ 5
 ▪probability of read operation: 0.1 ~ 0.7

3.2. Simulation results

First, we simulate SoC traffic performance according the
number of masters. The results are shown in Figure 3.

Figure 3. Average of arbitration latency, CA, at multi-
master SoC in single channel architecture

 The y axis is average arbitration latency. The x axis is sum of
CUR at each master. The default arbitration latency is 1 clock
cycle.

From Figure 3, we make the following observations.

 ▪ Arbitration latency increases exponentially with CUR.
 ▪ Arbitration latency increases in proportion to the number
of master. This means that more the number of masters, more
optimal mapping architectures are required.

Second, we simulate the arbitration latency with two

arbitration algorithms: round-ring algorithm and fair
algorithm. The round-ring algorithm is very popular in shared
bus architecture because it is simple to implement, low
latency, and uniform bandwidth at each master. The fair
arbiter has the priority algorithm that all masters have equal
ratio of number of grant per request [8]. The fair algorithm is
hard to implement, in spite of merit for bandwidth guarantee
without any adjusting of specific parameter.
The results for arbitration latency are shown in Figure 4 for

2, 3, 4 masters.

Figure 4. Average of arbitration latency, CA, at multi-
master SoC with 2 types arbitration algorithm in single
channel architecture

From Figure 4, we make the following observations.

 ▪ When the number of masters are 2 and 3, arbitration
latency is not affected by the arbitration algorithm.
 ▪ When the number of masters are 4, arbitration latency is
smaller at the fair arbiter than the round-ring arbiter.

 We define the difference of request intervals among masters
as dCR = (CRmax - CRmin) / CRavg. Then original CA curve of
master 4 is separated by curve1, where dCR < 1, (upper curve

in Figure 5) and curve2, where dCR > 1, as shown in Figure
5.

 ▪ dCR ≤ 1: asymptotic round-ring arbiter behavior
 ▪ dCR > 1: lower latency at CUR > 0.6 than round-ring
arbiter
 ▪ When the request intervals have a large difference among
masters, fair arbiter is better than round-ring arbiter. The
arbitration latency by a round-ring arbiter is more increased
at the master that has big request intervals. The fair
arbitration algorithm gives a first priority to a master that
uses the channel with a relatively less. Therefore the
arbitration latency by a fair arbiter reduces at the master that
has big request intervals, so total arbitration latency of system
reduces.

Figure 5. Average arbitration latency, CA, at 4 masters
with 2 types arbitration algorithm in single channel
architecture

 The performance degradation is serious if the mapping of
components to the channel is not optimized. For example, the
channel utilization with 4 masters decreases 2.5 times each
master than with 2 masters at the large CUR. Therefore if
CUR is large value, then it is better to use more channels.
However system has restricted resources, the optimal
mapping of components to the channel is required toward
decreasing of channel utilization ratio.

4. Conclusion

We defined the channel utilization ratio, and we proposed
the analyzing methods for evaluating the arbitration latency
for multi-master SoC on the shared channel architecture. By
using proposed methods, we analyzed the performance of a

channel from the viewpoint of the number of masters and
arbitration algorithm.

Arbitration latency has a trend as below formula with
number of masters and channel utilization ratio.

 CA = c1 × (Nm-1) × exp(c2 × CUR) + CAmin
 where c1, c2 : constant
 Nm : number of masters
 CAmin : default arbitration latency

The analyzing method using channel utilization ratio is
possible to look for the peculiar characteristics of
components composed of SoC. And we can inquire the
architecture of channel and parameterize the components for
improving performance of SoC base on analyzed results.
Also to maximize the performance of SoC in multi-channel
architecture, the mapping algorithm for masters and slaves
can be made by satisfying the requirements of CUR.

References

[1] A. Brinkmann, "On-Chip Interconnects for Next
Generation System-on-Chips, " In Proc. of the 15th Annual
IEEE International ASIC/SOC Conference, pp. 212-215, Sep.
2002
[2] Se-Joong Lee, "An 800MHz Star-Connected On-Chip
Network for Application to System on a Chip," ISSCC Dig.
Of Tech. Papers, pp. 468-469, 2003.
[3] Amer Baghdadi, "An Efficient Architecture Model for
Systematic Design of Application-specific Multiprocessor
SoC," Proceedings of the Design Automation and Test in
Europe Conference, pp55-62, 2001
[4] Kyeong Keol Ryu, "Automated Bus Generation for
multiprocessor SoC Design," Proceedings of the Design
Automation and Test in Europe Conference, pp. 282-287,
Mar. 2003
[5] Kanishka Lahiri, "Evaluation of the Traffic-Performance
Characteristics of System-on-Chip Communication
Architectures," in Proc. Intl. Conf. on VLSI Design, pp.21-35,
Jan. 2001
[6] E. S. Shin, "Round-robin arbiter design and generation,"
Proceedings of the International Symposium on System
Synthesis , pp. 243-248, Oct. 2002
[7] K. Lahiri, "Lottery: High performance communication
architecture for system-on-chip designs," in Proc. DAC, pp
15-20, Jun. 2001
[8] Jisuhn Suh, "An Analysis and Implementation of High
Fairness Arbitration Mechanism by Using Level-table and
Static Priority Orders in Shared Bus Architecture,"
Proceedings of IP based SoC design 2003

