
192 • 2005 IEEE International Solid-State Circuits Conference 0-7803-8904-2/05/$20.00 ©2005 IEEE.

ISSCC 2005 / SESSION 10 / MICROPROCESSORS AND SIGNAL PROCESSING / 10.6

10.6 A 50Mvertices/s Graphics Processor with
Fixed-Point Programmable Vertex Shader
for Mobile Applications

Ju-Ho Sohn, Jeong-Ho Woo, Min-Wuk Lee, Hye-Jung Kim,
Ramchan Woo, Hoi-Jun Yoo

KAIST, Daejeon, Republic of Korea

The real-time 3D graphics is one of the most important features
in 3G mobile applications such as cellular phones and PDAs.
Their graphics processors integrate many rendering hardware to
provide more realistic images within limited battery lifetime and
small memory bandwidth [1-4]. Moreover, the average eye-to-
pixel angle is larger than that of a PC, because users often hold
the small screens closer to their eyes. Therefore, every pixel in
mobile applications should be drawn with higher quality than
that in a PC. Until recently, only the dedicated hardware graph-
ics engines, which are datapath-centric, have been studied to pro-
vide high drawing speed with low power consumption for mobile
applications [2-3]. However, the flexibility for OpenGL or DirectX
shading language extensions should be supported for high quali-
ty of graphics images. In this work, the implementation of a user-
programmable graphics processor in mobile applications is
reported. The hardware is designed with programmable shading
architecture using fixed-point arithmetic, and optimized to an
ARM10 co-processor for high performance as well as flexibility in
low power consumption.

The graphics processor contains a user-programmable 128b,
4×32b fixed-point SIMD vertex shader [1] as shown in Fig. 10.6.1.
To implement the programmability for high quality graphics, the
vertex shader is configured as instruction set extensions of
ARM10 using co-processor architecture. Moreover, enhanced
from the conventional architecture of ARM co-processor, the pro-
posed vertex shader has an internal code memory with dedicated
vertex program control unit in order to process various vertex
programs independently of ARM10. Although the vertex shader
has multiple register files for processing of the streaming vertex
data, input/output vertex register files have only 1-read/1-write
port and global register-forwarding logic is used only in the gen-
eral-purpose SIMD register file to reduce the chip area. The
intermediate results of SIMD multiply are bypassed locally in
arithmetic units.

Figure 10.6.2 shows the block diagram of the graphics processor
consisting of a 32b RISC processor, 128b user-programmable ver-
tex shader, a rendering engine (RE) and a programmable fre-
quency synthesizer (PFS). The co-processor interface connects
the vertex shader to ARM10-compatible 32b RISC processor,
transferring the vertex shader instructions. The vertex shader
performs all per-vertex operations such as geometry transforma-
tions and lighting, and accelerates primitive assembly such as
clipping and culling. RE employs a low power 128b SlimShader
rendering engine [2] with 26kB SRAM graphics cache system.
The graphics cache consists of 2D-screen-array direct-mapped
frame and depth caches, and two 2-way set associative texture
caches. RE is responsible for the rasterization and the per-pixel
operations such as alpha blending and texture mapping. The
internal vertex buffer is used for RE commands transfer from the
vertex shader. Since all intermediate data and instructions are
transacted through the co-processor interface and the vertex
buffer, the system bus interfaces are used only to transfer input
vertices and output pixel data. Both of the RISC with 16kB I/D
caches and the vertex shader operate at 200MHz. RE operates at
the quarter frequency, 50MHz, for low power consumption.

The chip controls its power consumption at both instruction and
block levels. The vertex shader reduces power consumption by
instruction-level power-control scheme as shown in Fig. 10.6.3.
ARM10 drives co-processor instruction valid (CPINSTV) signal
only when vertex shader instructions are called. Using CPINSTV,
the clock signal of each SIMD register file can be gated off when
it is not required. CPINSTV also reduces the power dissipated in
datapath of SIMD arithmetic units by eliminating the unneces-
sary transactions. Therefore, the co-processor architecture of the
vertex shader shows fine-grained power management on an
instruction-by-instruction basis, and achieves up to 43% power
reduction in various graphics applications.

To manage the dynamic power consumption at the block level,
PFS of Fig. 10.6.4 is used. Although the previous implementation
supports only abrupt change between three frequencies (2×, 1×,
0.5×) [2], this PFS can continuously tune the target frequencies
with PLL-type frequency synthesizer covering wide frequencies
ranging from 8 to 271MHz. Once the operation mode is selected
by OP_MODE (fast/normal/slow), FREQ_CTRL sets the target
frequency. The frequency in fast mode can vary from 32 to
271MHz with 1MHz steps, in normal mode from 16 to 135.5MHz
with 500kHz steps, and in slow mode from 8 to 67.75MHz with
250kHz steps. Since the 3D graphics applications are executed at
a given frame rate, only a finite amount of pixels should be drawn
within the time slot of a single frame. After the vertex shader and
RE finish drawing pixels, their datapaths are unnecessarily
clocked for the rest of the time until the next frame restarts. The
software graphics library running on the RISC measures the
average workload of the current frame, and sets the target fre-
quency of PFS adaptively for processing of the next frame. Even
though the frequency of the clock output (CKout) changes contin-
uously before it locks to the target frequency, the chip can oper-
ate reliably since all logics are designed with fully static circuits
and the chip communicates with off-chip devices asynchronously.
The PLL locking time is less than 50µs and it consumes less than
2mW. PFS provides four different clocks, and each clock can be
selectively gated on or off by the software.

The chip is fabricated in a 0.18µm 6M CMOS standard logic
process. The die size of processor core is 23mm2 including 2M
logic transistors and 96kB SRAM. The standard bi-directional
asynchronous SRAM interface allows it to operate with any exist-
ing microprocessor or mobile-system chipset. It consumes 155mW
at 200MHz RISCclk / 50MHz REclk and 1.8V. The chip achieves
50Mvertices/s geometry performance and 200Mtexels/s drawing
speed with bilinear MIPMAP texturing. Figure 10.6.5 summa-
rizes the chip features, and Fig. 10.6.6 shows the chip micro-
graph.

Figure 10.6.7 compares the performance of the proposed archi-
tecture and that of the previous works [2-4]. The performance
index of graphics processing speed / power consumption is used
for the comparison of power consumption and performance. The
parallel operations of ARM10 and vertex shader improve the per-
formance by 1.8 times.

References:
[1] Ju-Ho Sohn et al., “A Programmable Vertex Shader with Fixed-point
SIMD Datapath for Low Power Wireless Applications,” Graphics
Hardware, pp. 107-114, 2004.
[2] Ramchan Woo et al., “A 210mW Graphics LSI Implementing Full 3D
Pipeline with 264Mtexels/s Texturing for Mobile Multimedia Applications,”
ISSCC Dig. Tech. Papers, pp. 44-45, 2003.
[3] Masatoshi Imai et al., “A 109.5mW 1.2V 600Mtexel/s 3-D Graphics
Engine,” ISSCC Dig. Tech. Papers, pp. 332-333, 2004.
[4] Fumio Arakawa et al., “An Embedded Processor Core for Consumer
Appliances with 2.8GFLOPS and 36M Polygons/s FPU,” ISSCC Dig. Tech.
Papers, pp. 334-335, 2004.

193DIGEST OF TECHNICAL PAPERS •

Continued on Page 592

ISSCC 2005 / February 8, 2005 / Salon 8 / 11:15 AM

Figure 10.6.1: User-programmable fixed-point SIMD vertex shader. Figure 10.6.2: Block diagram of graphics processor.

Figure 10.6.3: Instruction-level power control.

Figure 10.6.5: Features summary. Figure 10.6.6: Chip photograph.

Figure 10.6.4: Programmable frequency synthesizer.

2KB Code
Memory

32kB
Display
Buffer

Input Vertex
Register File

Output
Vertex

Register
File 0

General
SIMD

Register File

Special
Function

Unit
()

Write Mask

Write Mask

opA opB opC

AR0 AR1

Instruction
Decode & Control

Unit

Co-processor
Interface vpControl

SWZ

Output
Vertex

Register
File 1

Write Mask
Output
Vertex

Register
File 1

Write Mask

Vertex Buffer

Source swizzle
Address register
Vertex program
control

Control
Register

SWZ:
AR0/AR1:
vpControl:

90b (I/D buses)

128b (command bus)

Fixed-point
SIMD Datapath x/1,x/1128b

128b
128b

128b

128b 32b

Fetch

Power
Control

RISC

RE

ARM-10

C
ac

he
C

on
tr

ol
le

r I$
16KB

D$
16KB

Co-processor Interface

Fixed-point
SIMD

Datapath

2KB
Code

Memory

32KB
Display
Memory

Vertex Shader

Vertex Buffer

Rendering Engine
Triangle Setup

Engine
Pixel

Processor

M
em

. I
nt

er
fa

ce

Clock
Control

PLL

PFS

External
Memory

Controller

Peripherals

Standard
Asyncronous

SRAM
Interface

External
I/O

Texture
Engine

12KB Frame
Cache

8KB Depth
Cache

6KB Texture
Cache

Sy
st

em
 B

us
 (8

00
M

B
/s

 @
 2

00
M

H
z)

90b

90b

128b

128b

32b

32b

32b

32b

32b

32b

56b

General SIMD
Register File

Input Vertex
Register File

Output Vertex
Register File 0

Output Vertex
Register File 1

Output Vertex
Register File 2

0

ARM-10

C
-o

pr
oc

es
so

r
In

te
rf

ac
e

R
eg

.CPINSTV

GEclk
(main clock)

Enable

vpControl

Fixed-point
SIMD

Datapath

op
A

op
B

op
C

Latch
D

E
Q

Latch
D

E
Q

Latch
D

E
Q

1

Clock-gating circuit

Clock-gating of register files

Operand isolations

Vertex
Shader

Active high @
Shader is called

PFS

Clock
Source

OP_MODE
[FAST/NORMAL/

SLOW]

PFD CP LPF

VCO

UP/DN
Bias

Converter

 N

PRE
SCALAR

PROGRAM
COUNTER

SWALLOW
COUNTER

 N

FREQ_CTRL
P

S

Software Controls

CK

= (16P+S)xCK
CKout

RESET

3

4

4

FREQ
DIV

RISCclk

GEclk

REclk

REMEMclk

1x

1x

1/4x

1/2x

Reference Clk
(1MHz)

Drawing
Pixels

Decreasing
Frequency

Power
Consumption

TimeFrame #0 Frame #1 Frame #2

Unnecessary
Power

Consumption by
Unwanted Clocking

Frequency
(RISCclk)

TimeFrame #0 Frame #1 Frame #2

50MHz

100MHz

150MHz

200MHz

250MHz

FAST SLOW SLOW

Locking Time
< 50us

253MHz 11.25MHz 40.5MHz

P=15, S=13 P=3, S=0 P=10, S=2

4
Enable

Process technology

Power supply

Transistor counts

Die size

Operating frequency
(RISC,Vertex shader / 3DRE)

Power consumption

Performance

General

Geometry

Rendering

Graphics
Functions

Programmability Vertex program version 1.1 compatible

Screen resolution up to 512 x 512 pixels

Shading Gouraud / Flat

Texture mapping Point/Bilinear MIPMAP filtering (perspective-correct)

Antialiasing x2, x4

0.18µm 6M CMOS

1.8V(core), 3.3V(I/O)

2M Logic
768kb SRAM (96kb)

4.8mm by 4.8mm (core)
6.0mm by 6.0mm (chip)

Fast : ~200MHz/50MHz
Normal : ~100MHz/25MHz
Slow : ~50MHz/12.5MHz

<155mW

1000MIPS (including ARM and vertex shader)
80MFLOPS(software emulation)

50Mvertices/s
(Geometry transformation)

50Mpixels/s, 200Mtexels/s
(Bilinear MIPMAP filtered pixel)

Triangle setup Hardware-accelerated triangle setup engine

Package 256 pin PBGA

Full 3D Pipeline
3.6Mvertices/s (sustaining)
(Including full OpenGL lighting, clip check and
texturing)

10

592 • 2005 IEEE International Solid-State Circuits Conference 0-7803-8904-2/05/$20.00 ©2005 IEEE.

ISSCC 2005 PAPER CONTINUATIONS

Figure 10.6.7: Performance comparison.

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170

5.0

42.9

144.0

90.6

161.2

ISSCC 2003
[2]

ISSCC 2004
[3]

ISSCC 2004
[4]

This Work
(w/o Vertex
Program)

This Work
(w/ Vertex
Program)

1.8x
Improvement

Pe
rf

or
m

an
ce

 In
de

x
(K

ve
rt

ic
es

/s
pe

r m
W

)
(mW)nConsumptioPower

/s)(kverticesSpeedProcessingGraphicsIndexePerformanc =

1.2V,
75MHz

1.25V,
400MHz

1.8V,
200MHz

1.8V,
200MHz

	Return to Main Menu
	=================
	Browse CD
	================
	Next Page
	Previous Page
	=================
	Table of Contents
	=================
	Full Text Search
	Search Results
	Print
	=================
	Help
	Exit CD

