A Reconfigurable Crossbar Switch with Adaptive Bandwidth Control for Networks-on-Chip

Donghyun Kim, Kangmin Lee, Se-joong Lee and Hoi-Jun Yoo

Semiconductor System Laboratory, Dept. of EECS, Korea Advanced Institute of Science and Technology (KAIST)
Outline

- Introduction
- Motivation
- Related Works
- Proposed Crossbar Switch Structure
 - Adaptive Bandwidth control scheme
 - Input/Output port
- Performance Evaluation
 - Traffic generators & MPEG 4 modeling
- Implementation Result
- Conclusion
Introduction

- System-on-Chip (SoC) design
 - Lots of heterogeneous IPs
 - Process scales down (Process variation)
 - Higher clock frequency

- Providing efficient interconnection is difficult
 - Reliable interconnection channel is required
 - Smaller clock domain

- Network-on-Chip (NoC) provides solutions for SoC design
 - Structured Interconnection
 - GALS communication
Motivation

◆ Variations on bandwidth.

<Homogeneous IPs>

<Identical Processing Units
→ Small Bandwidth Variation

Heterogeneous IPs
→ Large Bandwidth Variation

Motivation (Cont’d)

- Conventional crossbar switch is not efficient building block of the NoC.

Performance is degraded due to insufficient bandwidth.

Waste of power or silicon area.
Related Works

- No considerations for NoC traffic conditions.

FLEXBAR
- [CICC 2002]
- Improved channel utilization

NAMOO
- [CICC 2003]
- Light-weight crossbar switch scheduler

A 51mW 1.6GHz On-Chip Network...
- [ISSCC 2004]
- Partial activation → Low power crossbar switch

Improved channel utilization

Light-weight crossbar switch scheduler

Partial activation → Low power crossbar switch
Proposed Switch Structure

- Additional bus accelerates heavily loaded input port.

Bandwidth is temporally doubled

Normal Transfer

Additional Bus
Bandwidth Control Scheme

- Additional bus enables adaptive bandwidth control.

< Low Bandwidth >

- FIFO has unused entry
 → 4 Cycles / Packet

< High Bandwidth >

- FIFO full
 → 2 Cycles / Packet
Buffer status determines use of additional bus.
Order of physical transfer unit is aligned at the output port.
Simulation Setup

- **Traffic generators**

<table>
<thead>
<tr>
<th>Case</th>
<th>Num. of TGslow</th>
<th>Num. of TGfast</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>TGslow ~ TGfast (8 steps)</td>
<td></td>
</tr>
</tbody>
</table>

- **3 Crossbar switches**

- Conventional 1X speed
- Conventional 2X speed
- Proposed 1X speed

International Symposium on Circuits and Systems 2005 Donghyun Kim 11
Throughput Comparison

Maximum 27% improvement

Case 1

Case 2

Case 3

Case 4

International Symposium on Circuits and Systems 2005
Latency Comparison

Case 1

Case 2

Case 3

Case 4

Maximum 41% improvement
MPEG 4 Example

- MPEG 4 system is modeled on a mesh NoC.

1) E.B. Van der Tol. et. al.
“Mapping of MPEG-4 Decoding on a Flexible Architecture Platform”
Implementation Result

Synthesis result and power comparison

<table>
<thead>
<tr>
<th></th>
<th>Conventional</th>
<th>Proposed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimated Area (unit inverters)</td>
<td>70524</td>
<td>85401</td>
</tr>
<tr>
<td>Maximum Operating Frequency</td>
<td>418 MHz</td>
<td>406 MHz</td>
</tr>
<tr>
<td>Power Consumption (at 400MHz)</td>
<td>66.8 mW</td>
<td>76.7 mW</td>
</tr>
</tbody>
</table>

Energy consumption

<table>
<thead>
<tr>
<th></th>
<th>Conventional</th>
<th>Proposed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy Consumption</td>
<td>0.99 mJ / MB</td>
<td>0.92 mJ / MB</td>
</tr>
</tbody>
</table>

7% improvement in energy consumption!
FPGA Implementation

- Proposed Crossbar switch is verified with various IPs.
Conclusion

- A Crossbar switch with adaptive bandwidth control is designed and verified.
 - Additional bus enables adaptive bandwidth control.

- Maximum 27% and 41% improvements in throughput and latency are achieved.

- With Adaptive bandwidth control scheme, efficient integration of heterogeneous IPs in NoC design is enabled.