# Design and Implementation of Read-Compare-Write Circuits for Low Power Multi-Gigabit DRAM

Sungdae Choi, Yong-Ha Park and Hoi-Jun Yoo

Semiconductor System Laboratory Department of Electrical Engineering Koread Advanced Institute of Science and Technology (KAIST)

# Outline

- □ Introduction
- □ Read-Compare-Write (RCW)
- Adaptive Column Control (ACC)
- Simulation Results
- Conclusions

# Introduction

### Low Power Memory for Mobile Multimedia Application

#### **Limited Battery Lifetime**



#### **3D Graphics**





#### **Portable Video**

**Frequent Memory Write Operations** 

## **Conventional Write Operation**



# **DB Line Swing in Memory R/W**



Eliminate Unnecessary Write Operation!!!

# Read-Compare-Write (1/2)



### **Compare before DB Swing**



### **Update Write**

Non-update Write

# **Conventional Column Control**



## **Adaptive Column Control**



### **Circuit Schematic**



### **Simulation Waveform**



# **Power Distribution Result**



# **Die Micrograph**



#### 3,500um

| Capacity   | 6Mb                                    |
|------------|----------------------------------------|
| Technology | 0.16um DRAM with 1-W 3-AI Metal Layers |
| Power      | 47mW (Data Update Ratio=0.0)           |
|            | 70mW (Data Update Ratio=1.0)           |

### Conclusions

RCW and ACC scheme are proposed to reduce the power consumption of memory write operations

RCW and ACC reduce the power consumption up to 24% during the write operation

□ Less than 5% Area Overhead

□ Applicable to the Mobile Multimedia System