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The visual attention mechanism, which is the way humans perform object
recognition [1], was applied to the implementation of a high performance
object recognition chip [2]. Even though the previous chip achieved 50% gain
of computational cost [2], it could recognize only one object in a frame so that
it is not suitable for advanced multi-object recognition applications such as
video surveillance, intelligent robots, and autonomous vehicle navigation [3].

A real-time multi-object recognition processor is presented based on the bio-
inspired visual perception algorithm. The proposed recognition processor has
4 features: 1) 3-stage pipelining with grid-based region-of-interest (ROI) pro-
cessing for high recognition rate, 2) Neural perception engine (NPE) with three
bio-inspired neural and fuzzy processing units for multi-object perception and
segmentation, 3) Low latency multi-castable Network-on-Chip (NoC) for high
bandwidth integration platform, and 4) Workload-aware power management
for low power consumption.

Figure 8.3.1 shows the overall block diagram of the proposed processor. It is
composed of 21 IPs on a chip: a NPE, a SPU task/power manager (STM), 16
SIMD processor units (SPUs), a decision processor (DP), and 2 external
memory interfaces. The bio-inspired NPE is composed of motion estimator
(ME), visual attention engine 2 (VAE2), and object segmentation engine (OSE).
It performs global feature extraction and object segmentation using the neu-
ral and fuzzy processing to extract ROIs. The 16 SPUs perform complex and
data-intensive image processing for the selected ROIs. The detailed block dia-
gram of the SPU is shown in Fig. 8.3.2. Each SPU consists of eight 16b SIMD
processing elements (PEs), 1 scalar datapath, 12KB 128b wide data memory
with 2 aligners, and 2D DMA. Dual-issue VLIW enables parallel execution of
data processing and data transfer operations. A register file with 5-read and 3-
write ports enables PE to execute 2-way 8b multiply-and-accumulate, 3-
operand 16b min/max compare, and 32b accumulation in a single cycle. For
low power consumption, the 16 SPUs are divided into 4 voltage/frequency
domains called SPU cluster (SPC). The STM dynamically assigns ROI tasks to
16 SPUs, and controls 4 SPC power domains. The DP recognizes each object
using the database search for the generated descriptor vectors by the SPUs.

Figure 8.3.3 shows the 3-stage multi-object recognition with grid-based ROI
processing. It is composed of: 1) visual perception, 2) descriptor vector gen-
eration, and 3) object decision. The visual perception stage classifies the
boundaries of the multiple objects based on the extracted static and dynamic
features from the input images. It extracts the ROIs for each object in a 40×40
pixel tile. Extraction of the ROIs in the visual perception stage reduces the
workload of the following stages by focusing their operations on only the
extracted ROIs. The descriptor vector generation stage calculates descriptor
vectors for the selected ROIs. Then, in the object decision stage, the descrip-
tor vectors of the objects are recognized through iterative matching with the
database. In the proposed processor, the 3 stages of the object recognition
pipeline are directly mapped to the NPE, 16 SPUs, and DP, respectively. The
STM controls the processing speed of 16 SPUs according to the workloads
coming from the NPE to match the processing time of each stage of the
pipeline. As a result, task pipelining with the grid-based ROI processing
reduces computation area by 41%, and achieves a 3.8× performance improve-
ment compared to the previous serial object recognition based on column-
wise processing [2].

The NPE consists of a 32b RISC processor, cellular neural network based
VAE2 [4], ME, OSE, and 24KB shared memory. After the VAE2 and ME gener-
ate a saliency map from the 1/8 down-sized 80×60 input images, the OSE
finally determines the ROIs for each object by selecting the 10 most salient
points and by growing the regions starting from the selected 10 seeds. For

robust and human-like object segmentation, the OSE has 4 of the Gaussian
fuzzy membership and 4 of the ADALINE neural networks [5]. Each Gaussian
fuzzy membership has the 3 evaluation inputs of intensity, saliency, and dis-
tance as shown in Fig. 8.3.4. The bell-shaped Gaussian curve, employed to
measure the similarities between the seed and target pixel, is simply imple-
mented by the analog differential pair and minimum follower circuit. As shown
in measured waveforms of Fig. 8.3.4, the operation of the segmentation pro-
cessing for 1 pixel is divided into 3 steps. First, 2 digital inputs for the
Gaussian function circuit are converted to analog signals. Then, the similarity
between the 2 signals is measured by Gaussian function circuit, and, finally,
the neural network merges the 3 evaluated similarities using synaptic circuits,
and makes the final decision whether the target pixel is joined to the region or
not. With the ADALINE learning, the weights are updated to adjust the criteria
for the final homogeneity decision. As a result, transistor level analog imple-
mentation of Gaussian function circuits and neural synaptic multipliers
reduces area by 59% and power consumption by 44% compared to those of
a digital implementation, and ROIs for 1 object can be obtained in 7µs at
200MHz.

Figure 8.3.5 shows the NoC architecture and its multi-castable crossbar
switch. A hierarchical star topology [2] integrates all 21 IPs with low latency
interconnection. To reduce the switch hopping latency between neighboring
SPCs, the ring connection links 4 SPC local networks. Multi-casting is useful
for program kernel or input image distribution to the 16 SPUs. To remove
redundant data transactions, multi-castable ports in crossbar switches
reserve the desirable output paths until they gather all grants from the
requested arbiters. The NoC utilizes a 400MHz operating frequency, which is
twice that of the IP clock, with the heterogeneous clock domain converter [6]
in each input port. As a result, the NoC guarantees 4-cycle latency for one
switch hopping and provides 118.4GB/s aggregated bandwidth.

The STM performs workload-aware power domain management and IP-level
clock gating as shown in Fig. 8.3.6 to reduce the power consumption of the
16 SPUs. The STM determines the number of activated SPC power domains
by measuring the per-frame workload from the NPE, and schedules ROI tasks
to the activated SPCs. In the activated power domains, the clock of each SPU
is gated by a software request for a further reduction of SPU dynamic power.
Through the domain management and the clock gating, the power dissipation
of 16 SPUs is reduced by 38% at a 60fps sustained frame rate.

Figure 8.3.7 shows the chip micrograph and summarizes its features. It is fab-
ricated in 0.13µm CMOS technology and occupies 49mm2 containing 36.4M
transistors with 3.73M gates and 396KB on-chip SRAM. The 1.2V processor
achieves 60fps object recognition for a maximum of 10 objects with 496mW
power consumption at 200MHz IP clock and 400MHz NoC clock frequency. Its
290GOPS/W power efficiency is the highest among the previously reported
parallel processors [2, 7, 8] as shown in Fig. 8.3.7.
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Figure 8.3.1: Overall block diagram of the real-time multi-object recognition processor. Figure 8.3.2: Block diagram of SIMD Processing Unit (SPU).

Figure 8.3.3: 3-stage multi-object recognition with grid-based ROI processing.

Figure 8.3.5: Proposed NoC architecture and multi-castable crossbar switch. Figure 8.3.6: Workload-aware power domain management and IP-level clock gating.

Figure 8.3.4: Analog-digital mixed OSE and measured waveforms.
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Figure 8.3.7: Chip micrograph and summary.

Please click on paper title to view Visual Supplement.

Please click on paper title to view Visual Supplement.
Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on July 2, 2009 at 20:24 from IEEE Xplore.  Restrictions apply.



 
 
    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: extend top edge by 36.00 points
     Shift: none
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     475
     307
     None
     Up
     0.0000
     0.0000
            
                
         Both
         AllDoc
              

       PDDoc
          

     Bigger
     36.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1b
     Quite Imposing Plus 2
     1
      

        
     3
     2
     3
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: extend bottom edge by 36.00 points
     Shift: none
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     475
     307
     None
     Up
     0.0000
     0.0000
            
                
         Both
         AllDoc
              

      
       PDDoc
          

     Bigger
     36.0000
     Bottom
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1b
     Quite Imposing Plus 2
     1
      

        
     3
     2
     3
      

   1
  

 HistoryList_V1
 qi2base



