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Smart eyeglasses or head-mounted displays (HMDs) have been gaining traction
as next-generation mainstream wearable devices. However, previous HMD 
systems [1] have had limited application, primarily due to their lacking a smart
user interface (UI) and user experience (UX). Since HMD systems have a small
compact wearable platform, their UI requires new modalities, rather than a 
computer mouse or a 2D touch panel. Recent speech-recognition-based UIs
require voice input to reveal the user’s intention to not only HMD users but also
others, which raises privacy concerns in a public space. In addition, prior works
[2-3] attempted to support object recognition (OR) or augmented reality (AR) in
smart eyeglasses, but consumed considerable power, >381mW, resulting in <6
hours operation time with a 2100mWh battery.

In this paper, we propose a low-power OR system with an intention-concealed
gaze UI for HMD applications, which can be used all day long with battery power.
Fig. 18.1.1 shows the overall system concept of the 3D stacked-gaze-activated
OR system on the HMD platform. The gaze-image sensor (GIS) stacked on the
OR processor (ORP) detects the HMD user’s pupil center location and as the
user moves his gaze on the display screen, he can point the cursor at an object
on the screen. Then, the electrooculography (EOG) sensor monitors eyelid
movement, such as a wink, to ‘click’ the cursor for the target object selection.
After the user selects a region-of-interest (ROI) within the image from the front
camera with the gaze ‘pointing’ and the wink ‘click’, the ORP performs OR only
for the selected ROI, leading to significant power reduction. There are 3 key 
features for the low-power gaze-activated OR system: 1) the GIS with focal-plane
pupil-edge detection circuits for low-power gaze estimation, 2) a reconfigurable
convolutional neural-network processor (CNNP) with a tile-parallel architecture
to reduce external memory accesses, 3) a descriptor-generation processor
(DGP) with trigonometric function approximation based on a look-up table (LUT)
for low-power processing.

Figure 18.1.2 depicts the overall system architecture of the gaze-activated OR
system, stacking the GIS chip and the ORP chip vertically. The ORP has a total
of 20 IPs connected by a 2D NoC. The EOG processor (EOGP) is a programmable
RISC to detect the wink command from EOG signals, and the DRM processor
(DRMP) controls DVFS based on the real-time workload estimation. The CNNP
reduces the gaze-selected 640×360 ROI into ~100 32×32 ROI tiles with 
sparse-feature learning by the CNN. From the ROI tiles selected by the CNNP, the
scale-space processor (SSP), feature-detection processor (FDP) and 
descriptor-generation processor (DGP) operate in a tile-level task pipeline to
extract SIFT feature vectors. The feature-matching processor (FMP) adopts a
low-power vocabulary forest processor architecture [2] and makes the final
recognition decision. The GIS in Fig. 18.1.2 has 320×240 pixel arrays, a 10b
ADC, and mixed-mode pupil-edge-detection circuits (PEDC) for low-power gaze
estimation. 

Figure 18.1.3 shows the key circuit diagrams of the PEDC for the new 
GIS-friendly pupil-edge-detection algorithm: XY pupil detection (XY-PD). The
XY-PD compares intensity values with 4 neighboring pixels along the X/Y axis of
the sensor, which is more power efficient than the previous 8-pixel 
weighted-sum operation [4]. For the XY-PD, the PEDC converts photo voltages
V1 and V2 into currents I1 and I2 by source followers M1 and M2, respectively.
Then, I1 is compared with I2+ITH and its digital voltage output is latched. A PEDC
is shared with all pixels connected to a column for column-parallel processing.
Since column-parallel processing requires fewer PEDCs than pixel-level 
processing, and the XY-PD requires only 4 pixel comparisons rather than the 
8-pixel weighted-sum operation, this work consumes 2.9× less power, even with
16× better resolution than the previous work [4]. In addition, the RISC in the GIS
reduces sub-pixel pupil detection error by fitting an optimum ellipse [5] on the
boundary of the dark pupil with the data obtained from the PEDC. As a result, the
proposed GIS obtains ~0.45° gaze-estimation accuracy, which is equivalent to
only 17 pixels on a virtual 100-inch screen of 1920×1080 resolution at 10ft 
distance.

The proposed CNNP of Fig. 18.1.4 employs a sparse-feature-based CNN – a
promising neural-network architecture for deep-learning applications [6]. It can
reduce the database size to 8kB from the 1MB associated with previous work [3]
obviating the need for massive external memory accesses. In addition, the CNNP
has a tile-parallel architecture with a multi-layer-perceptrons (MLP) classifier for
fast ROI tile selection. The same reconfigurable 200-MAC (multiply-accumulate)
array performs the tile-parallel convolutions in the CNN mode with the offline
learned sparse features, and then the MAC operates in MLP mode to make the
final decision for the tile selection. It supports 8-tile parallel convolution 
operations with 8-way MAC arrays in CNN mode, and 200 parallel MAC 
operations with 200-way MAC arrays in MLP mode. As a result, it takes 3ms to
process a 640×360 ROI rescaled in size to 160×90, and consumes 18mW peak
power, which is 1.8× smaller than a previous hierarchical convolution 
accelerator [3].

Figure 18.1.5 shows the LUT-based low-power DGP architecture to calculate the
trigonometric functions with low-power consumption. Since the rotation-
invariant feature vector can be obtained with an 11.25° orientation binning 
operation, rather than with precise arctan ALU operations, we use a LUT to
remove the power-hungry arctan ALU [2]. The orientation LUT in Fig. 18.1.5
determines the bin index among 32 orientation bins containing arctan results.
The proposed trigonometric LUT reduces power by 1.5×, with <0.4% matching
error, which is negligible considering the 11.25° accuracy requirement.

Figure 18.1.6 gives measurement results for the CNNP with the tile-parallel CNN
for ROI selection. The C1 result shows the intermediate image result extracted
from the convolution operation on 50 sparse features in the C1 layer of Fig.
18.1.4. The C3 result shows the intermediate result of the convolution operation
at the C3 layer with 250 sparse features. The MLP accepts the C3 results to
select the final ~100 ROI tiles among 225 tiles, achieving 56% workload 
reduction. It is noticeable that even the C3 results look very similar to the final
selected ROIs. The DRMP chooses one of 4 different DVFS modes based on a
workload estimation, shown in Fig. 18.1.6. There are 3 dynamic power domains
in the ORP: the SSP and FDP are in domain1, the DGP in domain 2, and the FMP
in domain 3. Because the workload of domain 1 is proportional to the number of
ROI tiles, the DRMP assigns {VDD1:0.7V f1:20MHz} to the SSP and FDP for a
scene with 30 ROI tiles, and {VDD1:1.2V f1:100MHz} to the SSP and FDP for a
scene with 215 ROI tiles. In addition, since the workloads of domains 2 and 3
are proportional to the number of features, the DRMP applies {VDD2:0.7V
f2:10MHz} to the DGP and {VDD3:0.7V f3:20MHz} to the FMP for a tile with 2 
feature vectors and {VDD2:0.7V f2:50MHz} to DGP and {VDD3:0.7V f3:100MHz} to
the FMP for a tile with 30 feature vectors. Consequently, ORP power is reduced
by 30% compared to the ORP without the DRMP.

The proposed 3.36×3.36mm2 GIS and 4×4mm2 ORP are fabricated in 65nm
CMOS technology integrating 3.68M NAND2 equivalent gate count and 400kB
SRAM as shown in Fig. 18.1.7. The GIS is 3D stacked on the ORP by wire 
bonding. The peak system performance is 151.3GOPS and its peak power 
consumption is 131mW. Since the size of the ROI is reduced by the GIS and the
CNNP, the OR system consumes 75mW average power with 30fps throughput
in 720p resolution with the help of the LUT-based DGP and the DRMP-controlled
DVFS. As a result, compared to the previous ORP [2], the proposed system 
consumes 3.4× lower power and 2.71nJ/pixel energy consumption. In 
conclusion, the low-power OR system with 3D stacking of GIS and ORP is 
successfully realized for a gaze-based smart intuitive UI suitable for HMD 
systems.
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Figure 18.1.1: A gaze-activated object-recognition system. Figure 18.1.2: System architecture of proposed OR system.

Figure 18.1.3: A mixed-mode PEDC in gaze image sensor.

Figure 18.1.5: A LUT-based DGP architecture. Figure 18.1.6: Measurement results of the DRMP for DVFS control.

Figure 18.1.4: A reconfigurable tile-parallel CNNP architecture. 18
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Figure 18.1.7: Chip photograph and performance summary.


