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Abstract— A low power competitive fuzzy edge detection (C-
FED) processor is proposed for gradient calculations in volume 
rendering. Its linearized fuzzy membership function reduces 
overall power by 35.1% and the proposed hardware sharing 
between computation stages reduces power consumption by 
18%. Threshold adaptive bit control scheme is proposed to pre-
determine background pixel with simple operation which results 
in 13% power reduction. Overall power consumption is reduced 
by 53.8%. Its power consumption and energy per pixel is 22.4 
mW and 0.14nJ/pixel, respectively, at 1.8-V supply. The 
fabricated processor occupying 450 μm x 450 μm in a 0.18 μm 
CMOS process achieves 1821.5fps for the input image of 300 x 
300 pixels at 200 MHz operating frequency. 

I. INTRODUCTION  
Edge detection is the process of identifying edge points out 

of an input image whose gradient values are maxima in pixel 
brightness. Since it is a basic pre-processing of various image 
processing applications, it has been actively researched for 
several years [1-3]. Among many edge detection algorithms, 
Sobel and Canny[4] are most widely used. Recently, edge 
detection is applied to a gradient calculation stage of volume 
rendering [5-6]. For real-time operation of volume rendering, 
hardware implementation of edge detection is needed, and 
only Sobel algorithm has been mapped to hardware from 
entire edge detection algorithms [7]. However, edge results of 
Sobel can be unsatisfactory because of its weakness at noise 
robustness, edge thickness and lack of adaptability of 
sensitivity. 

In this paper, we propose a low power edge detection 
processor for volume rendering based on competitive fuzzy 
edge detection (C-FED) algorithm [8]. The C-FED algorithm 
is suitable for volume rendering because it obtains sharp and 
noise robust edge outputs than Sobel algorithm with adaptive 
edge sensitivity control process.  

Since C-FED can obtain sharp and noise-robust edge, it is 
employed for low power edge detection processor. In order to 
reduce power consumption of C-FED processor, software-
hardware co-optimization is applied. Firstly, we modified the 
C-FED algorithm with linearized membership function. By 
linearizing membership function, we can eliminate complex 

multiplication and division in operation. Second, by sharing 
hardware components between operation stages, it is 
employed for low power edge detection processor. Third, 
proposed threshold adaptive bit control scheme avoids 
unneeded calculations by pre-determining some of 
background (BGND) pixels. With proposed three schemes, the 
overall power consumption can be reduced by 53.8%. Finally, 
implemented C-FED processor in a 0.18μm CMOS process 
consumes only 22.4 mW. 

II. ALGORITHM 

A.  Conventional C-FED 
Fig. 1 shows stages of C-FED algorithm. The first step is 

to calculate the gradient in 4 directions. The next step is to 
classify gradient vectors into one of 6 classes. Each class is 
represented by its threshold vector ci (0≤ i ≤6). The 
Epanechinicov fuzzy set membership function which is shown 
in Eq.(1) decides the closest threshold vector by the 
comparison with the gradient vectors .  

 
Figure 1. Overview of C-FED algorithm  
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Figure 2. 2-D Conventional membership function and linearized function 
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If the pixel is classified as an edge (class 1-4), then 
competition between neighboring pixels occurs to decide 
which pixel is the strongest edge. Otherwise, the pixel is 
classified as a BGND pixel (class 0) or a speckle pixel (class 
5) without competition.  

B. Membership function linearization(MFL)  
Linearization of fuzzy membership function in Eq.(1) is 

proposed in order to avoid multiplication and division. Since 
pixel is detected by comparing fuzzy value of each class, 
Eq.(1) can be multiplied by same factor w2 on both 0 and 
second order term without any differences in result decision. 

}  ,0max{)( 22 cxwxu −−=                     (2) 

The linearization result of Eq. (2) is expressed as following 
Eq. (3).  
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Additional parameters such as s, t0 and t1 are introduced so 
that multiplications can be implemented using simple shift 
operations as shown in Eq.(4) (s = log2[w-c]  ,  t0 = c2, t1 = 2w2 
- c2) 
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Fig.2 shows 2-D graph of a conventional membership 
function and a linearized membership function. Since class 
decision is made by comparing relative magnitude of each 
membership function and only central region near threshold 
vector which reduces error of approximation is concerned, 
MFL has negligible effect on the edge output result while 
reducing power consumption by 35%. 

III. SYSTEM ARCHITECTURE 
Fig.3 shows the overall architecture of proposed C-FED 

processor. The processor consists of controllers, line 
memories, and a window processor. Controller unit manages 
overall operations of the entire processor. Memory controller 
reads input pixels from memories and distributes to the proper 
line memories. 

 
Figure 3. Overall system architecture of C-FED processor 

 

 
 

Figure 4. Meander propagation sequence for time-hiding memory 
 

The processor contains 6 input line memories and 4 output 
line memories. Each line memory stores all pixels of one row 
of input image.  To calculate sub- direction edges, 5x5 pixels 
are required to calculate class of one center pixel. In output 
generation stage, neighboring 3 pixels are also candidates for 
edge decision. Therefore 5 input memories and 3 output 
memories are required. However, 1 additional memory for 
each input and output memories are required respectively to 
hide delay of reading and writing process of memory in 
meander propagation. The detailed operation of time-hiding 
memory is shown in Fig. 4. 

IV. WINDOW PROCESSOR DESIGN 
Fig. 5 shows the proposed algorithm and architecture of 

window processor which can be largely divided into the finite 
state machine (FSM) part and the datapath. The datapath 
contains sub blocks including gradient calculation unit(GCU)s, 
fuzzy classifiers, and max decision units. 
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Figure 5. (a) Proposed edge detection algorithm and (b) window processor  

 
Figure 6. (a) Gradient calculation unit (b) fuzzy classifier 

 

GCU in Fig.6 (a) calculates sum of absolute differences 
(SAD) between 3 input pixels. Fuzzy classifier in Fig.6 (b) 
also performs SAD operation in order to calculate differences 
between input pixels and corresponding threshold vector for 
each class. Due to linearization of fuzzy membership function, 
it operates without multiplication and division. 

A. Hardware sharing(HS) 
4 GCUs are shared in window processor as shown in Fig. 

5 (b). In order to reduce power and area consumption, gradient 
calculation is shared between Stage 1: Edge Calculation Stage 
and Stage 2: Competition Stage. As shown in Fig. 5 (a), 
BGND class pixels require only Stage 1 for decision while 
edge class pixels need both stages. Since ratio of BGND class 
pixels is larger than that of edge class pixels in usual cases, the 
processor operates without considerable degradation of 
throughput due to HS while power consumption is reduced by 
18%. 

 

 
Figure 7. BGND detector with TABC 

 

 
Figure 8. 1-D Fuzzy membership function versus gradient input 

 
B. BGND detector with threshold adaptive bit control 

(TABC) scheme 
To reduce the power consumption, TABC scheme is 

proposed to pre-determine the BGND pixel without utilization 
of following GCUs and fuzzy classifiers. Fig. 7 shows the 
BGND pixel detector with TABC scheme implemented by 
simple XOR gates and AND gates. Output bit sets to high 
when the center pixel is classified as a BGND class.  

The main principle of BGND detector is that BGND pixel 
and other neighboring pixels have similar value since BGND 
pixel has small gradient value on each direction. In hardware 
realization, BGND is decided if several MSBs have the same 
value through all input pixels. 

To effectively measure similarity, the TABC scheme 
adaptively determines the number of MSBs for comparison 
corresponding to the threshold value. Therefore, only essential 
MSBs are activated while the redundant transitions in the 
datapath for LSBs are inhibited. In addition, false detection of 
BGND never occurs because TABC uses the sufficient 
condition for classifying a pixel as BGND. 

In the proposed architecture, the maximum number of 
MSBs “K” according to the threshold input values (Lo, Hi) is 
determined by  

 ⎣ ⎦)/2 Hi  (log - 9 2 += LoK .                           (5) 

If the pixel has determined to be a BGND class by TABC 
scheme, then the absolute difference between center pixel(p5) 
and arbitrary pixel(pi) is less than 8- K bits number since 
upper K bits are already compared to be the same , which can 
be described as follows. 

 K-8
5 2 <− ipp                                                  (6)  

A gradient magnitude (gi) of one direction, represented by 
sum of two Eq.(6) s, results in Eq.(7). 
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The fuzzy membership function is symmetrical with respect 
to the threshold vector value in both conventional and 
linearized cases as shown in Fig. 8. If gradient value in one 
direction is less than the mean value of threshold, then the 
gradient is classified as “Lo” class. All the gradients of target 
pixel of TABC scheme are classified as “Lo” classes. Since 
threshold vector of BGND class is [Lo Lo Lo Lo], TABC 
guarantees that the pixel is BGND. 

V. IMPLEMENTATION RESULTS 
The test edge detection images are shown in Fig.9 to show 

the proposed processor’s ability to produce thin lines in 
correspondence with object contours. We adopt the test noised 
image shown in Fig.9 (a). The result processed by Sobel edge 
detection is represented in Fig.9 (b). Fig.9 (c) is the result of 
the proposed processor. The better performance edge detection 
is obviously distinguished in the result given by the proposed 
processor. 

The proposed competitive fuzzy edge detection window 
processor is fabricated in a 0.18μm CMOS technology. Fig.10 
shows a chip photograph and implementation summary of 
proposed window processor. It occupies 0.2025mm2. The 
frame rate is 1821.5fps for image of 300x300 pixels. The 
average dissipated power is 22.4mW while the processor 
operates competitive fuzzy edge detection at 200MHz 
frequency. The energy consumption is 0.14nJ/pixel. 

 Fig. 11 shows the measured waveforms of input image bit 
and output edge bit at 200 MHz clock. In case of BGND (B) 
pixel, output bit occurs after 1 cycle. Otherwise if edge pixel is 
an edge, operation takes 2 cycles.  

 Fig.12 summarizes total power reduction. As a result, 
MFL, HS, and TABC achieve 35.1%, 18%, 13% power 
reduction respectively. Finally, total 53.8% power reduction is 
achieved. 

VI. CONCLUSION 
A 22.4 mW low power C-FED processor is designed and 

implemented in 0.18 μm CMOS process. Fuzzy membership 
function is linearized for efficient hardware mapping. The C-
FED processor shares hardware between computation stages 
to reduce power. TABC scheme is proposed to pre-determine 
BGND pixel with simple operation. Proposed schemes reduce 
overall power consumption by 53.8%. As a result, 22.4mW 
power consumption is achieved while the frame rate is 1821.5 
fps for image of 300 x 300 pixels at 200 MHz operating 
frequency.  

 
Figure 9. (a)  Input image (b) Sobel edge detection result (c) C-FED result  

 
Figure 10. Chip photograph and Features 

 

 
Figure 11. Measured waveform 

 
Figure 12. Power reduction results by proposed schemes. 
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