
A 22.4 mW Competitive Fuzzy Edge Detection
Processor for Volume Rendering

Joonsoo Kwon, Minsu Kim, Jinwook Oh, and Hoi-Jun Yoo
Department of Electrical Engineering

KAIST
Daejeon, Republic of Korea
js1616@eeinfo.kaist.ac.kr

Abstract— A low power competitive fuzzy edge detection (C-
FED) processor is proposed for gradient calculations in volume
rendering. Its linearized fuzzy membership function reduces
overall power by 35.1% and the proposed hardware sharing
between computation stages reduces power consumption by
18%. Threshold adaptive bit control scheme is proposed to pre-
determine background pixel with simple operation which results
in 13% power reduction. Overall power consumption is reduced
by 53.8%. Its power consumption and energy per pixel is 22.4
mW and 0.14nJ/pixel, respectively, at 1.8-V supply. The
fabricated processor occupying 450 μm x 450 μm in a 0.18 μm
CMOS process achieves 1821.5fps for the input image of 300 x
300 pixels at 200 MHz operating frequency.

I. INTRODUCTION
Edge detection is the process of identifying edge points out

of an input image whose gradient values are maxima in pixel
brightness. Since it is a basic pre-processing of various image
processing applications, it has been actively researched for
several years [1-3]. Among many edge detection algorithms,
Sobel and Canny[4] are most widely used. Recently, edge
detection is applied to a gradient calculation stage of volume
rendering [5-6]. For real-time operation of volume rendering,
hardware implementation of edge detection is needed, and
only Sobel algorithm has been mapped to hardware from
entire edge detection algorithms [7]. However, edge results of
Sobel can be unsatisfactory because of its weakness at noise
robustness, edge thickness and lack of adaptability of
sensitivity.

In this paper, we propose a low power edge detection
processor for volume rendering based on competitive fuzzy
edge detection (C-FED) algorithm [8]. The C-FED algorithm
is suitable for volume rendering because it obtains sharp and
noise robust edge outputs than Sobel algorithm with adaptive
edge sensitivity control process.

Since C-FED can obtain sharp and noise-robust edge, it is
employed for low power edge detection processor. In order to
reduce power consumption of C-FED processor, software-
hardware co-optimization is applied. Firstly, we modified the
C-FED algorithm with linearized membership function. By
linearizing membership function, we can eliminate complex

multiplication and division in operation. Second, by sharing
hardware components between operation stages, it is
employed for low power edge detection processor. Third,
proposed threshold adaptive bit control scheme avoids
unneeded calculations by pre-determining some of
background (BGND) pixels. With proposed three schemes, the
overall power consumption can be reduced by 53.8%. Finally,
implemented C-FED processor in a 0.18μm CMOS process
consumes only 22.4 mW.

II. ALGORITHM

A. Conventional C-FED
Fig. 1 shows stages of C-FED algorithm. The first step is

to calculate the gradient in 4 directions. The next step is to
classify gradient vectors into one of 6 classes. Each class is
represented by its threshold vector ci (0≤ i ≤6). The
Epanechinicov fuzzy set membership function which is shown
in Eq.(1) decides the closest threshold vector by the
comparison with the gradient vectors .

Figure 1. Overview of C-FED algorithm

978-1-4244-5309-2/10/$26.00 ©2010 IEEE 1883

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on August 09,2010 at 02:47:21 UTC from IEEE Xplore. Restrictions apply.

Figure 2. 2-D Conventional membership function and linearized function

}/1 ,0max{)(22 wcxxu −−= (1)

If the pixel is classified as an edge (class 1-4), then
competition between neighboring pixels occurs to decide
which pixel is the strongest edge. Otherwise, the pixel is
classified as a BGND pixel (class 0) or a speckle pixel (class
5) without competition.

B. Membership function linearization(MFL)
Linearization of fuzzy membership function in Eq.(1) is

proposed in order to avoid multiplication and division. Since
pixel is detected by comparing fuzzy value of each class,
Eq.(1) can be multiplied by same factor w2 on both 0 and
second order term without any differences in result decision.

} ,0max{)(22 cxwxu −−= (2)

The linearization result of Eq. (2) is expressed as following
Eq. (3).

=)(xu
) c (x }2)(- ,0max{
) c (x })(,0max{

i
22

i
2

>−+−
<+−

cwxcw
cxcw

 (3)

Additional parameters such as s, t0 and t1 are introduced so
that multiplications can be implemented using simple shift
operations as shown in Eq.(4) (s = log2[w-c] , t0 = c2, t1 = 2w2
- c2)

=)(xu
c) (x }- ,0 max{
c) (x } ,0max{

i1

i0

>+<<
<+<<

tsx
tsx

 (4)

Fig.2 shows 2-D graph of a conventional membership
function and a linearized membership function. Since class
decision is made by comparing relative magnitude of each
membership function and only central region near threshold
vector which reduces error of approximation is concerned,
MFL has negligible effect on the edge output result while
reducing power consumption by 35%.

III. SYSTEM ARCHITECTURE
Fig.3 shows the overall architecture of proposed C-FED

processor. The processor consists of controllers, line
memories, and a window processor. Controller unit manages
overall operations of the entire processor. Memory controller
reads input pixels from memories and distributes to the proper
line memories.

Figure 3. Overall system architecture of C-FED processor

Figure 4. Meander propagation sequence for time-hiding memory

The processor contains 6 input line memories and 4 output
line memories. Each line memory stores all pixels of one row
of input image. To calculate sub- direction edges, 5x5 pixels
are required to calculate class of one center pixel. In output
generation stage, neighboring 3 pixels are also candidates for
edge decision. Therefore 5 input memories and 3 output
memories are required. However, 1 additional memory for
each input and output memories are required respectively to
hide delay of reading and writing process of memory in
meander propagation. The detailed operation of time-hiding
memory is shown in Fig. 4.

IV. WINDOW PROCESSOR DESIGN
Fig. 5 shows the proposed algorithm and architecture of

window processor which can be largely divided into the finite
state machine (FSM) part and the datapath. The datapath
contains sub blocks including gradient calculation unit(GCU)s,
fuzzy classifiers, and max decision units.

{

{

1884

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on August 09,2010 at 02:47:21 UTC from IEEE Xplore. Restrictions apply.

Figure 5. (a) Proposed edge detection algorithm and (b) window processor

Figure 6. (a) Gradient calculation unit (b) fuzzy classifier

GCU in Fig.6 (a) calculates sum of absolute differences
(SAD) between 3 input pixels. Fuzzy classifier in Fig.6 (b)
also performs SAD operation in order to calculate differences
between input pixels and corresponding threshold vector for
each class. Due to linearization of fuzzy membership function,
it operates without multiplication and division.

A. Hardware sharing(HS)
4 GCUs are shared in window processor as shown in Fig.

5 (b). In order to reduce power and area consumption, gradient
calculation is shared between Stage 1: Edge Calculation Stage
and Stage 2: Competition Stage. As shown in Fig. 5 (a),
BGND class pixels require only Stage 1 for decision while
edge class pixels need both stages. Since ratio of BGND class
pixels is larger than that of edge class pixels in usual cases, the
processor operates without considerable degradation of
throughput due to HS while power consumption is reduced by
18%.

Figure 7. BGND detector with TABC

Figure 8. 1-D Fuzzy membership function versus gradient input

B. BGND detector with threshold adaptive bit control

(TABC) scheme
To reduce the power consumption, TABC scheme is

proposed to pre-determine the BGND pixel without utilization
of following GCUs and fuzzy classifiers. Fig. 7 shows the
BGND pixel detector with TABC scheme implemented by
simple XOR gates and AND gates. Output bit sets to high
when the center pixel is classified as a BGND class.

The main principle of BGND detector is that BGND pixel
and other neighboring pixels have similar value since BGND
pixel has small gradient value on each direction. In hardware
realization, BGND is decided if several MSBs have the same
value through all input pixels.

To effectively measure similarity, the TABC scheme
adaptively determines the number of MSBs for comparison
corresponding to the threshold value. Therefore, only essential
MSBs are activated while the redundant transitions in the
datapath for LSBs are inhibited. In addition, false detection of
BGND never occurs because TABC uses the sufficient
condition for classifying a pixel as BGND.

In the proposed architecture, the maximum number of
MSBs “K” according to the threshold input values (Lo, Hi) is
determined by

 ⎣ ⎦)/2 Hi (log - 9 2 += LoK . (5)

If the pixel has determined to be a BGND class by TABC
scheme, then the absolute difference between center pixel(p5)
and arbitrary pixel(pi) is less than 8- K bits number since
upper K bits are already compared to be the same , which can
be described as follows.

 K-8
5 2 <− ipp (6)

A gradient magnitude (gi) of one direction, represented by
sum of two Eq.(6) s, results in Eq.(7).

1885

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on August 09,2010 at 02:47:21 UTC from IEEE Xplore. Restrictions apply.

Lo)/2 (Hi 2 p - p p - p 1K)-(8
j5i5 +=<+= +

ig (7)

The fuzzy membership function is symmetrical with respect
to the threshold vector value in both conventional and
linearized cases as shown in Fig. 8. If gradient value in one
direction is less than the mean value of threshold, then the
gradient is classified as “Lo” class. All the gradients of target
pixel of TABC scheme are classified as “Lo” classes. Since
threshold vector of BGND class is [Lo Lo Lo Lo], TABC
guarantees that the pixel is BGND.

V. IMPLEMENTATION RESULTS
The test edge detection images are shown in Fig.9 to show

the proposed processor’s ability to produce thin lines in
correspondence with object contours. We adopt the test noised
image shown in Fig.9 (a). The result processed by Sobel edge
detection is represented in Fig.9 (b). Fig.9 (c) is the result of
the proposed processor. The better performance edge detection
is obviously distinguished in the result given by the proposed
processor.

The proposed competitive fuzzy edge detection window
processor is fabricated in a 0.18μm CMOS technology. Fig.10
shows a chip photograph and implementation summary of
proposed window processor. It occupies 0.2025mm2. The
frame rate is 1821.5fps for image of 300x300 pixels. The
average dissipated power is 22.4mW while the processor
operates competitive fuzzy edge detection at 200MHz
frequency. The energy consumption is 0.14nJ/pixel.

 Fig. 11 shows the measured waveforms of input image bit
and output edge bit at 200 MHz clock. In case of BGND (B)
pixel, output bit occurs after 1 cycle. Otherwise if edge pixel is
an edge, operation takes 2 cycles.

 Fig.12 summarizes total power reduction. As a result,
MFL, HS, and TABC achieve 35.1%, 18%, 13% power
reduction respectively. Finally, total 53.8% power reduction is
achieved.

VI. CONCLUSION
A 22.4 mW low power C-FED processor is designed and

implemented in 0.18 μm CMOS process. Fuzzy membership
function is linearized for efficient hardware mapping. The C-
FED processor shares hardware between computation stages
to reduce power. TABC scheme is proposed to pre-determine
BGND pixel with simple operation. Proposed schemes reduce
overall power consumption by 53.8%. As a result, 22.4mW
power consumption is achieved while the frame rate is 1821.5
fps for image of 300 x 300 pixels at 200 MHz operating
frequency.

Figure 9. (a) Input image (b) Sobel edge detection result (c) C-FED result

Figure 10. Chip photograph and Features

Figure 11. Measured waveform

Figure 12. Power reduction results by proposed schemes.

REFERENCES
[1] Q. Ying-Dong, C. Cheng-Song, C. San-Ben, L. Jin-Quan“A fast

subpixel edge detection method using Sobel–Zernike moments
operator,”Image and Vision Computing, vol.23, pp. 11–17, 2005.

[2] D. Heric, D. Zazula, "Combined edge detection using wavelet
transform and signal registration," Image and Vision Computing, vol.25,
pp.652–662, 2007.

[3] G. Grassi, P. Vecchio, E. Di Sciascio, L. A. Grieco and D. Cafagna,
"Neural networks for image processing: new edge detection algorithm,"
2007 IEEE International Conference on Electro/Information
Technology, pp. 498-502, 2007.

[4] J. Canny, "A Computational Approach to Edge Detection," IEEE Trans.
Pattern Analysis and Machine Intelligence, vol. 8, pp. 679-698, 1986.

[5] J. Kniss, G. Kindlemann, C. Hansen, "Interactive Volume Rendering
Using Multi-Dimensional Transfer Functions and Direct Manipulation
Widgets," IEEE Visualization Conference, pp. 255 - 262, 2001.

[6] M.P. Persoon, I.W.O. Serlie, F.H. Post, R. Truyen, F.M. Vos,
"Visualization of Noisy and Biased Volume Data Using First and
Second Order Derivative Techniques," IEEE Visualization Conference,
pp. 379 - 385, 2003.

[7] N. Kazakova, M. Margala, and N. G. Durdle, “Sobel edge detection
processor for a real-time volume rendering,", IEEE International
Symposium on Circuits and Systems , vol.2, pp. 271–350, 2004.

[8] L.R. Liang, C.G. Looney, "Competitive fuzzy edge detection," Applied
Soft Computing, vol.3, pp. 123–137, 2003.

1886

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on August 09,2010 at 02:47:21 UTC from IEEE Xplore. Restrictions apply.

